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ABSTRACT

We consider power type nonlinear conjugation problem for analytic functions. Our main
question is to make this problem well-posed, i.e. to find such classes of functions in which
this problem possesses a unique solution. These classes are those with prescribed
collections of zeros in the domains and/or on their boundaries.

1. INTRODUCTION

Linear boundary value problems for analytic functions seems to be now clas-
sical subject of Analysis (for its advanced description see e.g. [1] - [2]). The
study of corresponding nonlinear problems was stimulated by applications in
different questions of elasticity, elasto-plasticity, hydrodynamics, composite
materials etc. (we refer the reader in to surveys [3], [4], [5], to books [6],
[7], and to the extensive bibliography therein). Among the approaches pre-
sented in this area are those of constructive nature (see e.g. [3], [4], [7]), in
which are generalized the analytic methods applied for the linear case. It was
appeared that such generalizations are not always applicable even to most
simple nonlinear problems. Some new features occur which need a new tech-
nique. Therefore the theory of nonlinear boundary value problems is far from
completeness.

One of the important questions at the study of nonlinear boundary value
problems is to find proper classes for solutions. It was shown (see e.g. [4],
[8]) that the solvability of these problems highly depends on the distribution
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of zeros of the solutions.

Here we study this dependence in the case of power type nonlinear conju-
gation problem (the corresponding linear problem is known also as Riemann
problem, or Hilbert problem). It was investigated by many authors (see e.g.
[9], [10], [11], [7]), but our approach slightly differs from those used in the
above cited papers.

We describe zero distribution in the domains and/or on their boundaries
in the cases when the explicit solution can be constructed. On this base
we discover the functional classes in which the problem under discussion is
well-posed.

2. NONLINEAR CONJUGATION PROBLEM.

We consider here the following problem: let L be a closed simple smooth curve
divided the complex plane C onto two domains D+ > 0, D™ 3 oo; given two
real numbers o, € R\ {0}, and two Hélder-continuous functions G, ¢ find
functions ®*,®~, analytic in DT, D~ respectively satisfying the boundary
condition

[t )] =G [@ 1) +9(t), te L, (2.1)

It should be noted that if «, 8 have different signs, i.e. a8 < 0, then (2.1)
becomes the problem of another type. Besides, the case a,3 € R_ can be
clearly reduced to the case of positive exponents. Therefore, we suppose in
what follows that o, 3 € Ry.

Following [4], [7] we say, that a pair of functions ®*, ®~ belongs to the class
AP if these functions are analytic in DT, D~ respectively, continuous up to
the boundary, and have exactly k,l zeros, which are situated into domains
DT, D™ respectively. If we additionally suppose that the functions of A*! are
possible to be vanishing on the boundary (not necessarily of integer order),
that we denote corresponding class by Akt

Our idea is to find ALL POSSIBLE values of parameters «, 3, for which the
problem (2.1) has a solution, rather than to prescribe the classes of solutions
beforehand.

Let us assume that z;' eD ,j=1,...,k (z]_ e D7,5=1,...,l1, respec-
tively) are zeros of ®T (®~), and ®~ has zero of order Iy at infinity; I = lo+1;.
By changing of unknown functions
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one can reduce (2.1) to the following boundary condition

I A
[g@—q)
0] = GO+ — 2 e,

(2.3)

«
1 k
where the products [ 1_1[ . ] ( l IT---| ) in the first term in the right-hand
j

j=1 j=1

side are boundary values of arbitrary fixed in D (D~ resp.) branches of cor-
responding multi-valued functions. The problem (2.3) has to be considered in
the classes A% or AF! of functions having no zero in the domains. Therefore
the following functions

-8B
[+ (2)]*, 2 € DY,

Ca (2.4)
[ (2)]°, € D7,

0 (z) = [ijl(z —z;)

are single-valued in the corresponding domains. Thus the problem (2.3) is
reduced to the equivalent linear boundary value problem

Qt(t) = GOt~ (t) + %ﬂ 5. t€L, (25)
k 15
[H(#—ﬁ)] bl@—zjﬂ

j=1 j=1

Denoting by x := wind,G the Cauchy index of the coefficient of (2.1), one
gets three essentially different situations.
1°. Let k,1 € Ny := {0,1,...} be such that

X = ka+13. (2.6)

Then for any pair of such (k,[) the index of the linear problem (2.5) is equal to
zero, hence (cf. e.g. [1, p.93]) this problem has the following analytic solution:

Qi(z) = exp{Si(log Gl)(z)[(Sigl)(z) -Gy, z € D*, (2.7)

where ST is the Cauchy type operator for z € D¥ respectively, Cy is an
arbitrary complex constant,

k o -8

Gi(t) = GOt =" gi(t) := g(t) | [ (t - =) II¢-=2)

j=1 j=1
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In order to have the solution of (2.7) belonging to A*! or A*! one should
choose the constant Cp in accordance with one of the following “branching”
condition (cf. [11]):

Co & (STg1)(DV) U (S™g1) (D), (2.8)

Co & (Stg)(DT)U (ST g1)(D7). (2.9)

Since the sets in the right-hand sides of (2.8) and (2.9) are bounded both
choices are possible.

Proposition 2.1. Let (k,l) € Ny x Ny be such that the condition (2.6) does
satisfy. Then the problem (2.1) has a solution

A
+
—~
&
I
—
N
|
N

) [ll'[ (z—z;)] a [QF(2)]7 = € DY,
(2.10)

wlR

[0=(2)]7 ,z € D,

o
|
~—~~
I
K
|
I
g
o
~—~~
=
[
n |xf“
D
=
~—~~
=
[
w |\,N
D

in the class A% (A¥1) if the complex constant Cy is chosen as in (2.8) (as
1

in (2.9) respectively). The functions [QT]=, and [Q_]% are then any branches
of the multi-valued functions with QF delivered in (8).

20, Let k,I € Ny be such that
Xo =X — ka — 13 € .\ {0}.
Then the coefficient of the problem (2.5) can be rewritten in the form
G1(t) := Gt 10 = Gy (t)tXo,

where windGy = 0. Therefore one needs to solve the following auxiliary
factorization problem:

Xt(t) =t X (t), teL, (2.11)

in the class A%, It is clear that by assumption there is no solution of (2.11)
in A%0,

a) xo € N.

It can be noted that we should suppose either Q* having zeros on L, or Q™
having them. Both are vanishing only at the points at which g(¢) = 0.
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Let us choose some points (for the sake of determines, different ones)
ti,...,ty, € L, at which

QF () -2 (t) =0, j = L,..., Xo.

X+(z):ﬁ(z tj), z € DT,
e (2.12)
X*(z)zl;[l(l -4y, 2eD.

By using (2.12) one can rewrite the boundary condition (2.5) as follows

at@) _ Q- (t)
X+ (t) exp{St(log Go)(?)} X=(t) exp{ys(;)(log Go)(8)} (2.13)

= XT(t)exp{ST(logGo)(®)} "

It is clear that the right-hand side of (2.13) is not in general integrable. To
overcome this difficulty we interpolate g2(t) := g1 (t) exp{—S*(log Go)(¢)} by
using of Lagrange polynomials:

g2(t)  ga(t)  g(2) & ga(t;)
X0 W) w) T )

— X0

where g(t) := g2(t) — > % Applying then Plemelj-Sokhotsky formu-
le 2 J

las to gw™!, and analytically continuing the equality (2.13) one is led to the

following general solution of the problem (2.5):

0 () = X+()exp{S*(ogGo) ()} [AS*@)(Z)—CO%’ 2.14)

07 (z) = X7 (2)exp{S™(logGo)(2)} [§—(§)(z)—00

)

where

v _ (2.15)

and the constants C; are chosen in the following way:

Cj= —gi(tj), if we prescribe Qt to be vanishing at ¢;,
Cj

P = 0, if we prescribe {2~ to be vanishing at ;. (2.16)
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We suppose also that Cy is taken as

Co & S*(g2)(DT) US ™ (g2)(D ). (2.17)

It should be noted that the branch of powers of the function X+ (of X~
respectively) is an arbitrary taken in the complex plane with cuts connecting
t; and oo (connecting t; and 0 resp.) and having no other common points with
L besides of ;. The branches of the others functions are chosen as before.

b) xo € -N.

It is not hard to see that the factorization problem (2.11) has no solution
in A% But if one try to use “meromorphic on the boundary” solution of
(2.11):

—Xo

XT(z) = [Hl(z—tj)] , z€ DT,

(2.18)

+ 2 t; B _
X7(2) [A-3)| ,zeb,
then it leads to very strong condition that the singular integral of the right-
hand side of (2.13) should have zero of at least first order at all ¢;th. To avoid
this we modify our scheme. Let us choose a rational number r such that

0 <r <min{Ag, Ay, 1 —€}; r-n = —xo,

where € € (0,1) is any “sufficiently small” number, n is a positive integer;
Aa, Ay € (0,1] are Holder exponents of the functions G and g respectively.
Having chosen points t1,...,t, € L we determine a solution of the factoriza-
tion problem (2.11) in the form:

XT(z) = ﬁ (z—t;)"", z€ DT,
it (2.19)
Xt(z) = .[[1(1 -4y zeD .

The branches of (z —t;)~", and of (1 — tz—")_’” can be chosen in C\ (¢;,0), in
C\ (0, t;) respectively in such a way that
t

n
(t=ty) "=t [It 7 =0forallt e L\{ts,...,tn}. (2.20)
j=1

Using the functions X* from (2.19) one gets immediately the following solu-
tion of the problem (2.5) of the class A%°:

{ 0F(2) = X*(2)exp{S*(log Go)(2)}[S*(g5)(2) — Co], z € D¥,
07 (z) = X (2)exp{S~(log Go)(2)}[S(93)(2) — Co], z € D*(,2 "
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with g3 := g1 (X*) " exp{—S*(log Go)}. The constant Cy have to be chosen
as

Co & S%(ga)(DF \ {t1,...,ta}). (2.22)

Besides, the terms in square brackets in (2.21) should vanish at the points
tj. Together with Plemelj-Sokhotsky formulas and with (2.22) it leads to the
following necessary and sufficient solvability conditions:

Co =S(g3)(t1) = -+ = S(gs)(tn) € ST(g3) (D \ {t1,.- -, ta}), (2.23)

where S is a singular integral operator with Cauchy kernel.

Proposition 2.2. Let (k,l) € Ny x Ny be such that xo # 0 is an integer
number.

If xo € N then the unique (up to the constant Co satisfied (2.17)) solution
of the problem (2.1) of the class A% has the form (2.10) with QF determined
in (2.14).

If xo € —N then then the solution of the problem (2.1) can be also delivered
by the formula (2.10) with QF given in (2.21). This solution belongs to A
if the solvability conditions (2.23) do satisfy.

Remark 2.1. The proposed scheme leads us to the solution with “maxi-
mally” possible order of zeros at certain points on the boundary, namely

_ min{Ag, Ay} i min{Ag, Ay}

a » L= ﬂ )
for ®*,®~ respectively. It means that from general conditions for G,g it
can be deduced only such order of zeros for solution. If G, g have smoother

behaviour at certain points then the solution can have there zeros of bigger
order.

3%, Let (k,1) € Ny x Ny be such that
Xo € R\ Z.

We are led again to the factorization problem (2.11), but with noninteger
exponent xo-

a) xo € Ry \Z,i.e. xo is noninteger positive number. There are in principle
two approaches to solve the factorization problem (2.11).

i) Let us choose n = [xo] points t; on L, and a point tg € L\ {t1,...,tn}
such that

X+(2) = (z—to)o Xl T[ (2 —t;), z€ DT,

i (2.24)
Xt(z) = (1-lfeyo-el [](1-%), 2 €D,

Jj=1
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is a solution of the problem (2.11). The choice of the branches of corresponding

multi-valued functions can be done as in the case 2b). Denoting w(z) :=
n

II (z — t;) we construct the Lagrange polynomial with the knots ¢; for the
Jj=1

function g4(t) : 92 Then the solution of the problem (2.5) in A00

= (t—to)x0~Txol *

is given by the formulas (2.14) with the operator S* defined in (2.15), and

the function g(t) := g4 — ][ % The constants C; are chosen in the

j=
same way as in (2.16), and Cjy satisfying (2.17).

Remark 2.2. The properties of Cauchy type integral (see e.g. [1, p.61]) show
us that

1) under the first (second) choice of C; in (2.16) the function Q*(¢) (2 (¢)
respectively) has zeros of at least an order A = min{Ag, \;} at ¢;;

2) any point tg,t1,...,t, is a zero for both functions QF,Q~ if the initial
function g vanishes at this point.

Remark 2.3. The choice (2.17) for Cy is again possible because either for
certain point ¢ € L we have (§+§(t)) e C\ (§—§(F)), or (§+§(L)) C
(g_ﬁ(ﬁ)) The last is impossible because if so then there exist a curve I

whose pre-image under the mapping w™ := §’§ and does not coincide with
L. It means that there exist an analytic function which maps disconnected
domain onto the whole complex plane.

ii) The second approach deals with idea of 2b), namely, we fix a number
r € (0,1) such that r < min{Ag,\;,1 — €}, r-n = xo for certain n € N.
Having chosen n points t;,7 = 1,...,n, on L we introduce the solution of
(2.11) X* by the formulas:

XT(z) = ﬁ (z—t;)", z € DT,
it (2.25)
Xte) = [la-4y, zeD,

<.
Il
-

with the appropriate choice of the branches of multi-valued functions (see
(2.20). Then the solution of the problem (2.5) in the class A% is delivered
in (2.21) with the choice of the constant Cy according to (2.22).

Remark 2.4. The difference between two approaches is in the following: the
first construction prescribe either to QF, or to 2~ to be vanishing at the
point ¢; (and even minimal order of zeros at these points), but the second
one guarantees only that the solution cannot be vanishing at no other point
despite (possibly) ¢;.
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It leads to two different meaning of the solution to the problem (2.1) in
Ak One can search or for solution which ought to have boundary zeros of
prescribed minimal order, or for solution which possibly have zeros at certain
points on the boundary.

b) xo € R_\Z,i.e. xo is a negative noninteger number. It should be noted
as in the case 2b), that taking solution of factorization problem in the form
(2.18) one get very strong solvability condition on the initial data. It means
that in principle it is difficult to get the solution of (2.1) of the first type
described in the previous Remark.

Therefore we look only for the solution of the second type. Let us fix a
number r € (0,1) such that » < min{Ag,A\;1 — €}, r - n = —xo for certain
n € N. Having chosen n (different) points ¢y, ...,t, € L we take the solution
of (2.11) in the form (2.19) with the choice of branches as in (2.20). Then the
formulas (2.21) give us solution of the problem (2.5) in the class A% if and
only if the solvability conditions (2.23) do satisfy.

Proposition 2.3. Let (k,1) € Ny x Ny be such that xo # 0 is an irrational
number.

If xo € Ry \ Z then the unique (up to the constant Cy) solution of (2.1)
in A%l can be represented in the form (2.10) with QF either given by the
formulas (2.14) with X* in (2.24), C; in (2.16), and Cy satisfying (2.17), or
OF given by the formulas (2.21) with X* in (2.25), and Cy satisfying (2.22).

The solution of the first type necessarily has zeros at the points t; of the
order not less than X\, but the second one is nonvanishing on L inspite possibly
the points t;.

If xo € R_\Z then the solution of the problem (2.1) can be also represented
in the form (2.10) with QF given by the formulas (2.21) with X* in (2.19),
Cj in (2.16). This solution belongs to Ak if the solvability conditions (2.23)
do satisfy.

3. SOLVABILITY THEOREM

Combining the above results we get the following

Theorem 3.1. Let the winding number x of the coefficient G of the nonlinear
conjugation problem (2.1) is nonnegative integer number, i.e. x > 0. Then:

i) the problem (2.1) has a solution (2.10) with QF in (2.4) and with Cj
chosen in accordance with (2.8) (respectively (2.8)) only in those classes A*!
(resp. in A%) for which the condition (2.6) holds;

ii) the problem (2.1) has a solution (2.10) of the first type, i.e. with QF
in (2.14), and with Cy chosen in accordance with (2.17) only in those classes
Akt for which xo := x — ka — 1 is positive;
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iii) the problem (2.1) has a solution (2.10) of the second type, i.e. with QO
in (2.21), X* given in (2.19), in those classes Ak for which xo is negative
number if the solvability conditions (2.23) do satisfy;

If x <0 then:

i) the problem (2.1) has no solution in the class A*!;

ii) the problem (2.1) has a solution (2.10) of the second type, i.e. with QF
in (2.21), X* given in (2.19), in those classes A¥! for which xo is negative
if the solvability conditions (2.23) do satisfy.
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ANALIZINIU FUNKCIJU NETIESINIO SUJUNGIMO
KRASTINIO UZDAVINIO KOREKTISKUMAS

S.V. ROGOSIN

Nagrinéjamas analiziniy funkcijy netiesinio sujungimo krastinis uzdavinys. Analizuojami
laipsninio tipo netiesiskumai. Pagrindinis darbo tikslas yra korektiskai suformuluoti uzdavi-
nj, t.y. rasti tokiy funkcijuy klase, kurioje §is uzdavinys turi vieninteli sprendinj. Parodyta,
kad tokia funkcijy klase sudaro funkcijos su i§ anksto uzduota nuliy aibe srityje ir /arba

ant jos kontiro.



