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ABSTRACT

In the present paper the difference schemes of high order accuracy for two-dimensional
equations of mathematical physics in an arbitrary domain are constructed. The
computational domain is covered by a uniform rectangular grid. The second order
accuracy of local approximation by spatial variables is achieved near-boundary nodes. No
increase of a standard grid scheme template is required. Apriori estimates of the stability
are obtained.

INTRODUCTION

Various approaches are used in numerical solution of boundary problems in
an arbitrary computation domain . The computation domain may be covered
by a uniform rectangular grid, and the difference scheme is constructed on
the essentially non-uniform template. Usually such schemes have the second
order of accuracy in the maximum norm, but the local error of approximation
near the boundary has the first order, or even the difference scheme does
not approximate the differential problem [1]. A high order of approximation
near the boundary is important for a number of problems. For example, it is
often necessary to compute the normal derivative of the solution at the whole
boundary of computational area or at the part of it.

Second-order accuracy schemes on irregular rectangular grids were con-
structed in [2] — [4]. Such algorithms were constructed using approximations
of the equation at a specially selected point. In [5; 6] on the basis of these
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methods a high-order approximation scheme was constructed for the elliptic
equation in an arbitrary computation area. In [7] a monotonicity of this
scheme was proved by means of the principle of maximum for a wide class of
areas. In the present paper the difference schemes of the second-order accu-
racy approximation are considered for elliptic and parabolic equations in an
arbitrary domain. In the case of rectangular domain such schemes degener-
ate to standard schemes [2] — [4]. The a priori estimates of the stability and
convergence are obtained for the algorithms. The tests results demonstrate a
high effectiveness of the proposed methods.

1. CONSTRUCTION OF THE GRID IN AN ARBITRARY DO-
MAIN

Let © be an arbitrary two-dimensional domain, and I' is a boundary. Let
us introduce in ) the uniform rectangular grid wy with the steps Hy for the
dimension xy, k = 1,2. Assume that the computational domain is convex and
the grid is connected.

Figure 1. The computation grid wg.

Let v, be a set of boundary nodes which are generated by intersection
points of the lines z; = const, k& = 1,2 with the boundary 0. Let w;, =
{x | x € QNwp} be a set of interior nodes. We also define the subset of near-

boundary nodes & and the subset of interior nodes @. We denote by ij a set
of near-boundary nodes in the direction zy. Let v,j be a set of right boundary
nodes and vy, be a set of left boundary nodes in the direction z;. We denote
by :Jki the sets of left and right near-boundary nodes, respectively. Let us
suppose that the difference grid is sufficiently detailed, i.e. for any x €w and
every k = 1,2 either zT'* or z~!* is not a point on ~.

We use the following notation of the theory of difference schemes [1]:

o~ . — i1 02 i _ ie—1 ik
X = Xiy,ip = (1‘1 » Ly )7 Ty = Ty +hk ’
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he = hi¥, hgy =hFth = §(hk+ + hi),

y=yx), y™ =yl@r+hig,22), y " =yler — hi, 1),

Yyt =y(m, o+ hoy), ¥ "2 =ylar, 2 — ho),

e —y _ Y-y

y L
by

Yo, — Yz
Yar, = ) Yz, T; Yzrir — “Tkxk, k= ]_,2

We use a standard approximation of the Laplace operator at the interior
nodes [1]:

Au ~ Uz, 3, + Uzyiy-

In order to determine the template of the difference scheme at near-boundary
nodes, the difference operator is defined as follows

A5u:uflﬁ1+6;_(uw2)flﬁ1+62_(uf2)f1561+uf2562+61’_(uw1)f2562+61_(u9?1)9?23@27 (11)

where (Ski :%(iLkﬁ:VLkD, iLk :%(hk+—hk), T :l'k-f‘ilk, k?:].,2.

This operator approximates the Laplace operator with the second order in
the case of a rectangular area which is covered by a rectangular non-uniform
grid [5], [6]. The operator (1.1) is called the template operator. The domain
of its definition prescribes the template of a difference scheme at the near-
boundary nodes. On the basis of this operator a difference scheme for an
arbitrary domain is developed. It is shown in [5] that this operator approxi-
mates the Laplace operator with the second order at the point x* = (z7, z3),
hy = xj — xx, k = 1,2. The corresponding eight-point template is shown in
fig. 1.

Let us define the following grid operators:

Ay = Ay + A2y = —Yz,3, — Yzoin,

6]C+A37kyzk7 h; > 0>
Aoy = Aby + Aly, Aky = 0, hy =0, k=12,
6]C_A3—kyfk7 hz < 07

As = A+ Ao, yl,, =0.

Let  be a linear Hilbert space consisting of the grid functions, y, = yn(x),
which are given on wy, and are equal to zero on the boundary. In # let define
the scalar product (v, y,) = Z hihovy, (X)yn (x) and the norm ||y||*> = (v, ).

XEWH

Let H4, A = A* > 0 be a Hilbert space consisting of the elements from H
with the scalar product and the norm

Iyl = (Ay,y) = llya,]* + llyz.]”,



136 P.P. Matus, A.N. Zyl

||yik]|2 = Z hkh?)—ky%k, k=1,2,

wa:

where w;” = wU ;.
Lemma 1.1. The following estimate is valid:

2
4oyl < 3l Ay]l.

2. DIFFERENCE SCHEME FOR THE ELLIPTIC EQUATION

In this section we consider the Dirichlet problem for the two-dimensional
Poisson equation in an arbitrary domain €:

2

> % =—f(x), x=(1,22) €, (2.1)
k=1 k
u(x) = g(x), x€0N. (2.2)

We develop the finite-difference scheme, which approximates the differential
problem (2.1), (2.2) of the second order with local approximation at the near-
boundary nodes.

Using (1.1) we get the difference scheme

Asy = —f(a},23), x€w, (2.3)
where
1
5§:§(hzilh;§|), In=mzp=xp+hj, k=12 (2.4)

In the case of rectangular non-uniform grid this scheme coincides with the
finite-difference scheme of the second-order accuracy [2] - [4]; in the case of
the regular rectangular grid it degenerates to the well-known scheme, which
is defined on the five-point template.

In order to apply the maximum principle to the scheme (2.3), we must
reduce it to the canonical form [1]:

axyx) = Y BEOUE) +e(x), xE€w.

£EM'(x)

It is necessary to satisfy the following conditions for the coefficients:

a(x) >0, B(x,8>0, ax) - Y BxE>0, xcw,  (25)

£EM'(x)

where M'(x) = M(x)\{x}, M(x) is the scheme template.
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Lemma 2.1. Let the conditions of the positivity of coefficients (2.5) are ful-
filled for all x € w. Then the difference scheme (2.3), (2.4) is stable with
respect to the (2.3), (2.4) right side and the boundary conditions, and the
following estimate is valid:

lyllcw) < collellew) + lluller),  co = const > 0.

The proof is similar to one given in [3].

Let ziin = Yiyin — u(zi',x5?), where y is the solution of the difference
problem (2.3) and u(z1,z2) is the solution of the differential problem (2.1),
(2.2). Substituting y = z + u into (2.3), we obtain the equation

Asz=—1¢, x€w, z(x)=0, x€7. (2.6)

Here ¢(x) = Asu + f(x*) is a truncation error of the scheme. If conditions
(2.5) are fulfilled, then using a priori estimates of stability and approximation
error we have

Illow) < M(h + h3), (2.7)

where M is a constant, which does not depend on hy, hs.

Theorem 2.1. Let the conditions of Lemma 2.1 are fulfilled for all x € w.
The solution of the difference scheme (2.3), (2.4) converges to the solution of
differential problem (2.1) and the estimate (2.7) is valid.

The conditions (2.5) are always fulfilled for seven-point templates (e.g.,
ho = hat = H; see fig. 2a), and for some eight-point templates (in our case
under conditions hj'> = H and hi'" = H; see fig. 2b) [7]. It is also easy to

Figure 2. Seven-point templates.

show that conditions (2.5) are fulfilled without limitations on the grid steps
for some types of polygons. E. g., these conditions are always fulfilled for
polygons that satisfy to condition

Bn=0 or 2/3<tgf,<3/2, n=12...,N,
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where N is the number of its sides, 3, is the slope angle of the n-th side with
respect to the grid lines.

The maximum principle requires fulfillment of strong conditions shape of
the on the domain 2 The method of energy inequalities allows us to obtain

estimates without limitations on the domain shape.
Let us write the difference scheme (2.3), (2.4) as

Asy = p(x), (2.8)

y(x) =0, x€7, (2.9)
where p(x) = f(zf,x3), As = A+ Ao.

Theorem 2.2. The difference scheme (2.8), (2.9) is stable with respect to the
right side, and the following estimate is valid:

14yl < 3ll¢l-
Proof We compute the scalar product of (2.8) with Ay. We have
(Ay, Ay) + (Aoy, Ay) = (¢, Ay). (2.10)

Using Lemma 1.1, we get (Aoy, Ay) > —2||Ay||*. Let us estimate the scalar
product (p, Ay) as

3 1
(¢, Ay) < 5llell” + 11 Ay[1*.
Combining the obtained inequalities and (2.10), we get ||Ay||*> < 2|l¢||*>. W
3. DIFFERENCE SCHEME FOR A PARABOLIC EQUATION
Let 2 be an arbitrary two-dimensional area with the boundary I'. Tt is required

to find the continuous function u(x,t), x = (21, ¥2), satisfying in Q7 = Q x
[0,T7] the initial-boundary problem

o
a_lt‘ = Lu+ f(x,t), (x,t)€Qr, (3.1)
2
0%
Lu = kz;l[zku, Lyu = 6—33,26’

u(x,0) = up(x), x€Q, ulpg, =px,t), 9Qr=Tx(0,T]. (3.2)

Further, we shall assume that a solution of the problem (3.1), (3.2) exists,
it is unique and has all necessary bounded derivatives.
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Let us introduce a spatial-time grid in Qr: ©@ =0y X @y, @y = {tn, =
nt, n=01,...,No; TNg=T}=w, U{T}.

Using the operator As we construct the difference scheme of high-order
approximation for the differential problem (3.1), (3.2). Thus the difference
scheme may be written as

Yyt + Asy'?) = F1O(x*, 1), (3.3)

where y,) =y + E {6k Yor + 0 Yz, }-
Let us determlne the order of the approximation error of difference scheme
(3.3). Substituting z + u for y into (3.3), we get the problem for the global z
Z(ayt T AJZ(J) = 1/}(0)5 z(x,0) =0, 2() |’Yh =0,

where ¢ = 1)1 + 12,

U1 = waye — 1) = O +7), (3.4
Yy = Asul® + Lu(x*,t) = O(h> + 1), (3.5)

h = max{hy, h2}.
XEWh
Using (3.4), (3.5), we get the following estimate

grelax||1/1||c <co(h*+71), co=const >0,
wr

where ||-||c = max |-|. Consequently, the difference scheme (3.3) approximates

the differential problem on the grid w;, with the second order.
Let define the following operators

o . . 6 Yur, hp >0,
A:Al—FAQ, Aky: 0, hz:O, k:1,2
6[;?/.7107 h; < 07
Then the difference scheme (3.3) can be written in the canonical form

By + Asy =@, yo=uo, ¢=fx"1), (3.6)

B=D+orA;s, D=E+A.
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Theorem 3.1. Let ||Ay||? < ci0?(Ay,y), ¢1 = const > 0, ||Aoy|)? < (1 —
c2)||Ayl|?, ca = const, 0 < ¢ < 1. Then under the limitation

2

(0%
> — > 0,5
T 4o -0,5a °
the following estimate
2 2 1 ¢ 2
lynsalla < lluolls + 55, > rliexll?, (3.7)
k=0

holds for the difference scheme (3.6), where ey, e2 = const > 0, c2 > 2(e1+¢€3.)

In order to obtain a priori estimate of the stability for the difference scheme
(3.3), we formulate the following statement.

Lemma 3.1. The operator A is subjected to the operator A
[ Ay||” < 20°(Ay, y),
where a=max{o, s}, oy =max,, |h}|, k=1,2, a<H/3, H=max{H,,H>}.

Theorem 3.2. The following estimate is valid

n
lynrilli < lluol% +9 7lloxl?
k=1

902

1o-05°""

in an arbitrary computational domain under the condition T >

0,5.

Proof . Using Lemmas 1.1, 3.1 we get the following constants for the con-
ditions of Theorem 3.1: ¢; =2, a = H/3, ¢; =5/9.If e; =2/9, g5 = 1/18,
then we get the required estimate. B

Remark 3.1. In the case of the rectangular computational domain which
is covered by a uniform orthogonal grid, we have a = 0, ¢ = 1, and the
difference scheme (3.3) is stable for any 7, h.

Remark 3.2. If 0 = 0, then the a priori estimate of the stability for the
difference scheme (3.3) can not be obtained.

Remark 3.3. Since Theorem 3.1 was proved without limitations on dimen-
sion of problem, then analogous results can be obtained also for multi-dimen-
sional parabolic equations.
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4. NUMERICAL EXPERIMENTS

The properties of the proposed scheme were examined by solving a num-
ber of tests. The comparison was made with the well-known finite-difference
schemes:

2
D Yras. = —f(x), xE€w, (4.1)
a=1
2 Yzo — Yz
> T =—f(x), x€uw. (4.2)
a=1 «

Difference equation (4.1) approximates equation (2.1) with the first order at
the near-boundary points and with the second order at the interior nodes [1].
Difference equation (4.2) does not approximate differential equation at the
near-boundary nodes. Both difference schemes (4.1), (4.2) have the second
order of convergence [1]. The computation domain is shown in fig. 3.

MMA

4.5

Figure 3. The computation domain.

We take the exact solution of problem (2.1), (2.2) as by
u(x) = exp(x1) + exp(z2)-

The data on the relative global error of the discrete solution and normal deriva-
tives at the near-boundary points are presented in the table. The calculation
time on the largest grid was about 15 minutes using a standard PC.

The new scheme allows us to obtain essentially better accuracy on the coarse
grids. The solution has a high accuracy near the boundary. A local error has
the maximum value inside the computation domain, but not at near-boundary
points.
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Table 1.
The plobal error ¢ and the error of the derivative ey,.
N € En
o(1) O(h) O(?*)  0O(1) O(h) O(h?)

12x12  0,012311 0,012297 0,013764 3,2364 3,2508 0,1469
25x25 0,006167 0,006220 0,004571 1,2240 1,3547 0,0524
50x50 0,002503 0,002411 0,001062 0,5541 0,4769 0,0271
100x100 0,001178 0,001205 0,000301 0,1450 0,1739 0,0150
200x200  0,000280 0,000279 0,000076 0,1997 0,2014 0,0082
400x400 0,000071 0,000072 0,000009 0,1549 0,1641 0,0042
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DIDELIO TIKSLUMO BAIGTINIU SKIRTUMU SCHEMOS
P.P. MATUS, A.N. ZYL

Darbe nagrinéjami matematinés fizikos uzdaviniai, kai apibrézimo srities konturas yra bet
kokia glodi uzdara kreiveé. Si sritis pakeiciama tolygiu staciakampiu tinklu. Panaudojant
specialias aproksimavimo formules ir pasienio taSkuose aproksimacijos paklaidos eilé yra
antroji. Svarbi naujojo algoritmo savybé yra tai, kad visuose taSkuose naudojamas toks pat
diskreciojo tinklo Sablonas. Irodomi aprioriniai stabilumo iver¢iai ir {vertinamas diskreciojo
sprendinio konvergavimo greitis. Pateikti skaic¢iavimo eksperimento, kuriame naujoji sche-

ma palyginama su dviem kitomis zinomomis baigtiniy skirtumy schemomis, rezultatai.



