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ABSTRACT

In this article the methods for obtaining the approximate solution of usual and
generalized Hilbert boundary value problems are proposed� The method of solution of
usual Hilbert boundary value problem is based on the theorem about the representation of
the kernel of the corresponding integral equation by � � t and on the earlier proposed
method for the computation of the Cauchy�type integrals� The method for approximate
solution of the generalized boundary value problem is based on the method for
computation of singular integral of the form
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proposed by the author� All methods are implemented with the Mathcad and Maple�

�� FORMULATION OF THE PROBLEM

Let D be the region� bounded by a simple closed curve L� It is known� that
the Hilbert boundary value problem can be formulated so
 obtain analytical
in D� and continuous on the boundary function

f�z� 
 u�x� y� � iv�x� y��

real and imaginary parts of which satisfy on the boundary the equation

a�s�u�s� � b�s�v�s� 
 c�s�� �����
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where a�s�� b�s� and c�s� are real functions of the arc length of the contour and
on the contour they satisfy the Hollder condition� There are some methods
for the solution of this problem� One of them is given in ���� The general
solution of the problem ����� is given by the formula
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where ���t� is the solution of the Fredholm�s integral equation
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��� is the solution of the integral equation
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and m
�

is the index of the problem� The functions w�z� are expressed by
the solutions of the Fredholm integral equations� One of the approximate
methods for the solution of this problem is proposed in ���� But the numerical
experiment shows� that this method is unstable and its error grows near the
boundary� This article proposes the method for the approximate solution of
the Hilbert boundary value problem� It is based on the method of approximate
computation of the Cauchy�type integral� proposed by the author in ����

�� FORMULATION OF THE ALGORITHM

Firstly we will prove the following theorem�

Theorem ���� Let a simple smooth curve L be parametrized x 
 x�f�� y 

y�f�� where x�f�� y�f� are three times di�erentiable� �� � periodical functions�

We de�ne the function

K�f�� f�� 
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where ��f�� 
 x�f���iy�f��� t�f�� 
 x�f���iy�f�� � s is the natural parameter�

K is a continuous function� if at � 
 t it is de�ned as

K�f�� f�� 
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It can be simply proved� that
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Letf� 
 f� ��f� Using the Taylor formula with the Peano residual term we
can obtain
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Substituting x�f��� y�f�� in ����� and passing to the limit at �f � � we
obtain
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We propose the following algorithm for the solution of the Hilbert boundary
value problem

�� Obtain the index of the problem m�

�� Compute the function ln

�
t�m

tm
G�t�f��

�
�

�� Solve the integral equation ������ We obtain the discretization of the
kernel� using the theorem� formulated above�
�� In order to de�ne the function ����z�� we construct spline interpolation

of the solution of the integral equation ������ obtain k�th partial sum of the
Fourier series of the function and using this sum� construct the function g��t��
where t � L�
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�� Compute the Cauchy�type integral
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We �nd the function w�z�� which maps the region D� on the unity circle
conformally� and the reverse function� mapping the unity circle on D� confor�
mally� Next we expand the function g��z�e

i��� in Fourier series and consider
k�th partial sum of this series� We consider the function ���w�z�� and obtain
Lk�z� � the main part of the Laurent series of this function� The approximate
value of the Cauchy�type integral of this function is the function ��z��Lk�z��
This function is continuous in the closed region up to the contour L� Let de�ne
the function X��z�� Then we compute the approximate solution of the inte�
gral equation ������ construct its spline interpolation� approximate it by the
k�th partial sum of its Fourier series and compute the Cauchy�type integral
as described above� Constants in ����� can be de�ned by
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where �i�t� are solutions of Fredholm�s integral equations �z�i��t� 
 qi�t� and

q�k���t� 
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This algorithm was realized in MathCad� In the numerical experiment we
take x�f� 
 a cos�f� � ib sin�f� and consider the boundary value problem�
We obtain the analytic in D� function� whose boundary values satisfy the
equation

cos���� cos�f��u�f� � sin����cos�f��v�f� 
 Re sin�a cos�f� � ib sin�f��

cos���� cos�f�� � Im sin�a cos�f� � ib sin�f�� sin���� cos�f���

The approximate value of the function� mapping the ellipse onto the unity
circle is given in ���


z�w� 
 ���
�

�
	� �

�

���
	��w�� � �

�

�
	�

�

�
	� �

�

��
	��w�

��
�

�
	� �

�

��
	��w� � �

�

�
	� �

�

�
	��w	 �

�

�
	�w
 �

��

��
	�w����



About the approximate solution ���

where 	 
 ���� For the approximation of the inverse function we use the
method� proposed by L�V� Kantorowich in � �� and developed by G�A� Niko�
laeva in ���� This method can be implemented with Maple� The index of
this problem is �� and one of its solutions is sin�z�� For example� at z 
 ���
the value of sin�z� 
 ����������� and the value of the obtained approximate
solution is ����������� ����������i�

�� THE GENERALIZED HILBERT PROBLEM

The generalized Hilbert boundary value problem can be formulated as follows�
Let D be a �nite simply connected region� bounded by Liapunov�s contour L�
It is required to obtain the analytic single valued function ��x� i� 
 u�x� y� �
iv�x� y�� continuous in D� � L� which satis�es on L the equation
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where a�t�� b�t�� c�t� are given on L real functions from H�L� and kernels
A��t� ��� B��t� �� are given functions from H�L � L�� We shall suppose� that
the contour can be parametrized as t 
 t���� where t��� is su�ciently times
di�erentiable function� It is known� that the solution of this problem has the
following form
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where ��t� is a solution of Fredholm integral equation
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m is the index of the problem� functions �k�t� have a form
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In this case the kernel of the equation has a form
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The following singular integrals enter this equation
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For the approximation of this integrals we propose the method of generalized
trigonometric series� Let the contourL be parametrized as t 
 t���� where � �
� � ��� First we expand functions A��t���� ������� B��t���� ������ in Fourier
series and replace obtained series by their partial sums� For the function
A��t���� ������ the partial sum of its Fourier series has a form

Sm��� ��� 

a����

�
�

mX
k��

ak��� cos�k��� � bk sin�k����

where coe�cients of the series are given by
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For the function B��t���� ������ the partial sum of its Fourier series has a
form
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We approximate the singular integral
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We can describe each of the singular integrals
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using Sochotzki�Plemelj formula
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where ���cos�k���� and ���sin�k���� are boundary values of corresponding
Cauchy�type integrals� Analogously we can approximate the integral
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We can compute the �rst component of the kernel� using the theorem� formu�
lated above� Then we approximately solve the integral equation� reducing it
to the linear system and obtain the solution of the problem� computing the
Cauchy�type integral� as described above�
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APIE KLASIKINIO IR APIBENDRINTO HILBERTO

KRA�STINIU
c
U�ZDAVINIU

c
SKAITINI

c
SPRENDIMA

c

V�R� KRISTALINSKII

Pateikti du skaitiniai metodai klasikinio ir apibendrinto Hilberto kra�stiniu
c
u�zdaviniu

c
spren�

dimui� Pirmasis metodas skirtas klasikinio u�zdavinio sprendimui
 jis remiasi teorema apie
atitinkamos integralin�es lygties branduolio skleidima

c
ta�sko � � t aplinkoje ir Ko�sy tipo

integralu
c
skai�ciavimo metodais� Apibendrintojo u�zdavinio sprendimo metodas remiasi me�

todu
 kuris buvo skirtas skai�ciuoti singuliarius integralus
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Metodai realizuoti Maple ir Mathcad paketais�


