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ABSTRACT

We construct a blending surface of two natural quadrics using rational variable rolling ball
approach, i.e. as a canal surface with a rational spine curve and a rational radius. All
general positions of the given quadric surfaces are considered. The proposed construction
is Laguerre invariant. In particular, the blending surface has rational offset of the same
degree.

1. INTRODUCTION

Rolling ball blends with fixed radius between two surfaces are frequently used
in geometric modeling. Though in literature one can find satisfactory solutions
in simple cases (see e.g. [8]), in general blending surfaces occur to be irrational.
Hence they cannot be exactly represented as Bézier or B-spline surfaces.

Our idea is to allow a variable radius of the rolling ball in order to obtain
a rational blending surface. We consider a blending problem between two
natural quadrics (namely: sphere, circular cylinder or circular cone) in close
general position. Our blending surface is a ring-shaped piece of a canal sur-
face with a rational spine curve and radius. This was done earlier only for
exceptional situations when Dupin cyclides were used (see, e.g. [7; 9]).

In section 2 we introduce preliminaries of Laguerre geometry. We sketch the
proposed blending construction and classify general positions (table 4, fig. 1)
in sections 3 and 4. Actual blendings in four canonical cases are explained in
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section 5.

2. LAGUERRE GEOMETRIC PRELIMINARIES

It is convenient to consider natural quadrics in the framework of Laguerre
geometry [6; 3]. In so-called cyclographic model of Laguerre geometry oriented
spheres in euclidean space R® are represented by points in R*: first three
coordinates are for the center and the last coordinate is for the signed radius.
The euclidean metric in R? is extended to the pseudo- euclidean metric in R*.
It is called a pe metric and is defined via the following inner product with the
associated norm:

(U, WYpe = v1w1 + V2wy + V3Ws — V4WY, (2.1)

||77||pe = (0,0 pe , if <Ua77>pe > 0. (2.2)

A pe distance between two points has a clear geometric meaning: it is equal
to a tangential distance between both corresponding spheres which do not
contain each other. In fact the space R* is well-known Minkowski space ]R‘lly3
Its projective extension P* contains the absolute quadric Q: zy = 0, 22 + 22 +
x3 — x5 = 0, which plays an important role.

In the rest of this section we sketch some definitions and facts from Laguerre
geometry. All details can be found in [3].

em Laguerre transformations are special affine transformations of R* keep-
ing the absolute quadric €2 invariant. They preserve tangential distances be-
tween oriented spheres. Lines in R* are classified from the Laguerre point of
view depending on their directional vectors I: they are called elliptic (resp.
parabolic, hyperbolic) if (l_: l_Bpe < 0 (resp. =0, > 0).

Any surface V' C R? has its associated isotropic hypersurface I'(V) C R
consisting of all points corresponding to spheres touching V. It is important
that a d-offset of V' is directly obtained from I'(V') as the hyperplane z4 = d
section:

d-offset V =T(V) N {z4 = d}. (2.3)

In case when V' is a natural quadric I'(V) is easy calculated (see Example 4
and Lemma 5 in [3]). Let S and R be a sphere and a cone (or cylinder) then

I'(S)=sxQ, T(R)=Lx(L,NN). (2.4)

Here = means linear join (i.e., a union of all lines going through both sets
surrounding a symbol %), s—a point corresponding to the sphere S, L—a
hyperbolic line, which defines a family of spheres with the envelop R, L}fe—
any hyperplane pe orthogonal to L.
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3. BLENDING CONSTRUCTION SCHEME

Consider two natural quadrics Q1 and Q> in euclidean space R®. All spheres
touching both given quadrics define a 2D surface T = I'(Q;) N T'(Q2) in
R*. Any rational curve v C T represents a family of spheres with rational
variable radius. Its envelope is some rational canal surface C C R®*. By
the construction the surface C' touches both quadrics @1 and @, so it can be
used for their blending. Hence the initial problem is reduced to an appropriate
choice of the curve v which should be rational.

Suppose such rational curve 7(t) is already given. Denote by ~;(t) the
curves of contact between the canal surface C' and corresponding quadrics @;,
i = 1,2. A calculation of ~;(t) is easy but depends on quadric type. If Q;
is a sphere S then +; is just a central projection of v with the center s (see
(2.4)) to the hyperplane R*: z, = 0. If @; is a cone/cylinder R then 1; is
obtained in two steps: at first v is projected from the 2D center on infinity
L, \ R (see (2.4)) to the line L and then the line connecting a point (t)
and its image is intersected with the same hyperplane R*. We see from the
whole construction that both curves -y; are rational, since they inherit their
parameterization from the given rational curve ~.

Now it remains to find a parameterization of a ‘ring shaped’ patch of the
canal surface C' bounded by curves 7, and ;. For ¢ = 1,2 denote by d;(t) the
infinite point of a line connecting points 7;(t) and «y(t). Then 6; C Q. Here
we treat () as a sphere (see Remark 18 in [3]) in the infinite 3D hyperplane
P*\ R*. At first parameterize a spherical patch of { via a variable circle
arcs with endpoints by = 01(t) and b2 = d2(¢). A middle control point of the
circle is determined via intersection of three planes: two tangent planes to 2
in endpoints and an infinite plane of W(t)}fe. Denote this parameterization by
F(t,u) (uis a circle parameter). Finally the parameterization G(t,u) of the
canal surface C is obtained via intersecting a line going through points F' (¢, u)
and () with the hyperplane x4 = 0.

4. CLASSIFICATION OF DIFFERENT POSITIONS

Since all previous constructions are Laguerre invariant, we can essentially
reduce our considerations to some canonical positions (see fig. 1) of given
natural quadrics: all other cases are Laguerre equivalent to them. From (2.4)
follows that spheres and cones/cylinders are encoded by points and hyperbolic
lines in R* respectively. Hence we need to consider positions of pairs point-line
and line-line in R* and classify them from the Laguerre point of view.

Let p and L be a point and a hyperbolic line. Their affine span is a 2D plane
P which can be hyperbolic, parabolic and elliptic (see Laguerre classification
of planes in [3]). We skip parabolic and elliptic cases, as non-generic and too
simple (Dupin cyclides can be used) respectively. In the hyperbolic case we
can suppose the plane P C R3.

Now let Ly, Lo be skew hyperbolic lines. (If they intersect then Dupin
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case A case B

case C case D

Figure 1. Four cases of two quadrics.

cyclides can be used.) Similar considerations as above leads to three different
cases B, C, D. They all are shown in the table 1. All these cases are not
Laguerre equivalent as we see from the last column, where a signature of an
affine span of L; U Ls is shown. Here a signature of 2D subspace associated
with line directional vectors is enclosed in brackets. We skip various parabolic
cases (i.e. with degenerated metrics) as non-generic.

Every canonical case corresponds via offsetting construction (2.3) to special
position of pairs of natural quadrics in R® (see fig. 1). Some of positions
have additional parameters: for example, in case B an angle between lines
is Laguerre invariant. Fortunately, different values of these parameters give
essentially the same situations.
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Figure 2. Blending in case A.

5. BLENDING IN FOUR CANONICAL POSITIONS

5.1. Case A

Consider a sphere ()1 with a center in the origin and a cylinder Q2 with an
axis parallel to the z;-axis and in distance h from it. They both are of the
same diameter d (remember d-offset!). Equations of isotropic hyperquadrics
I'(Q;) in homogeneous coordinates of P* are easy derived (here we applied
(—d)-offsetting for simplicity):

:t:f + x% + x% = :ci,
(x2 — hao)® + 25 = 3. (5.1)
Table 1.
Different positions of two natural quadrics
Case Types of quadrics Representation in 4D Signature
A sphere and cylinder point and line ++
B two cylinders two lines (++)+
C two cylinders two lines (++)—
D cylinder and cone two lines (+—-)+
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Both these equations defines an intersection surface T'= I'(Q1) NI'(Q2). They
are equivalent to the following system of equations

a:% + a:% = (z2— ha:o)2,

T — 3 (z2 — hxo)®. (5.2)

Consider a biquadratic parameterization of the surface T":

mo = —2tf(ug —ui)/h,

T1 = 2t0t1(u(2) — U%),

vy = (5 —t])(ug — ui),

I3 = 2(t(2) —+ t%)UO'Ml,

ry = (B2 +6)(ud +ud). (5.3)

Define a curve y(¢) of degree 8 by substituting
to=a(l —t?), t; =2bt, wo=wu; =1+t

to (5.3). It is the smallest possible degree of a rational curve on T with the
desired topology of its position. Indeed, T is isomorphic to the spindle torus:
see [2; 1], where rational curves on such surfaces are investigated in details.
Taking h = 2, d = 0.9, a = b = 0.4 and applying the procedure of section 3
we get fig. 2.

5.2. Case B

Figure 3. Blending in case B.
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Consider two skew cylinders ); and @2 with orthogonal axes (in distance h
from each other), both of the same radius d. Equations of isotropic hyper-
quadrics T'(Q;) in homogeneous coordinates of P* are the following (here we
applied (—d)-offsetting for simplicity):

m% + (x5 — hmg)2 = i,
z] + (z3 + hao)? = 25, (5.4)

Both these equations defines an intersection surface T' = I['(Q1) N I'(Q2).
Consider its biquadratic parameterization

zy = (tjug —tiui)/h,
X1 = Q(tg + t%)UOUh
T2 = 2(”% —+ U%)totl,
r3 = t%u% - t%uf,
= (B+)(ud+u? 5.5
e = (o + 1) (ug +uy)- (5.5)

Similarly to case A define a curve «y(t) of degree 8 by substituting
to=a(l —t?), t; =2bt, wo=wu; =1+t

to (5.5). It is also the smallest possible degree of a rational curve on T with
the desired topology of its position. Now T is isomorphic to the ring torus
(see [2; 1]). Taking h = 1.3, d = 1.6, a = b = 0.7 and applying the procedure
of section 3 we get fig. 3.

5.3. Case C

Consider two cylinders (1 and ()2 with axes crossing each other orthogo-
nally and with radii h + d and d. After (—d)-offsetting equations of isotropic
hyperquadrics I'(Q;) in homogeneous coordinates of P* are the following

3+ a2 = (14— hxo)?,

i +23 = i (5.6)

We simplify this system of equations (which defines T = T'(Q1) N ['(Q2))
applying the following substitution

zo = (—y1—y2+ys+ya)/h,
1 = Y3 — Y4,

T2 = Y1 —Y2,

x3 = 2yo,

e = Ys+uys.
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Figure 4. The surface 7' and two variants of v projected to R3.

we get the system

Yiy2 = Yo,
Ysys =Yg (5.7)

The latter can be parameterized by twisted projective plane P(1,1,2) (see
[2]):

Yo = totiu, Y1 = t%tf, Yo =u?, ug= tgu, Us = t%u. (5.8)

In order to define a curve v(t) of degree 4 we substitute to = ¢, t1 = 1,
u = 2(1+¢?). This curve is on the ‘antenna’ of T' as it is shown in a projection
to R? in fig. 4. In fact this is a bisector of two cylinders (cf. [4]). Taking
h =2,d=1 and applying the procedure of section 3 we get fig. 5.

Figure 5. Exterior blending in case C.
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Consider slightly different case. Let radii of the given cylinders @; be h —d
and —d. Define y(t) by to = ¢, t; = 1, u = —1.5(1 + t?). It is shown on the
‘pillow’ in fig. 4. Taking h = 2, d = 0.5 we get an interior blending (see fig. 6).

Figure 6. Interior blending in case C.

5.4. Case D

Consider a cylinders ()1 and a cone () with parallel axes in distance h from
each other (see fig. 1D). The situation corresponds to isotropic hyperquadrics
I'(Q;) given by equations

3 +xs = (3 + \/5:64)2,
(zo — hxo)? + 25 = 3. (5.9)

We simplify this system of equations and applying the following substitution

ro = (—y1+y2+ys—wya)/h,
T1 = —Y1— Y2+ Y3+ ys,

T2 = Y3 — Y4,

r3 = 2yo,

e = Y1 t+y2,

we obtain exactly (5.7). Hence the surface T = I'(Q1) N T'(Q2) is the same
(i-e., projectively equivalent) as in case C. Then similar methods leads to the
blending in fig. 7.

6. CONCLUSIONS AND FUTURE WORK

We constructed a G'-blending between two natural quadrics in close general
position. The blending surface is a ring-shaped patch of a rational canal
surface with rational boundary curves and rational offset. An additional ad-
vantage of this construction is its Laguerre invariance. This allows to classify
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Figure 7. Blending in case B.

all possible positions of a pair of natural quadrics from the Laguerre point of
view and to obtain blending solutions only from several canonical cases.

Parabolic cases (so non-generic) were skipped here for simplicity. They will
be investigated in the forthcoming paper. Also using B-spline curve v we will
get lower degree blending surfaces.
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NATURALIU KVADRIKIU JUNGIMAS RACIONALAUS
APRIEDANCIO RUTULIUKO METODU

K. KARCIAUSKAS, R. KRASAUSKAS

Naturalios kvadrikos (sferos, apskritiminiai cilindrai ir kiigiai) daznai naudojamos geomet-
riniame modeliavime. Siame darbe sifilomas naujas dviejy natiiraliy kvadrikiy glodaus jun-
gimo metodas, naudojant kintamo racionalaus spindulio apriedancio rutuliuko metoda, t.y.
jungiamasis pavirsius — tai kanalinis pavirsius, kuris turi racionalia asine kreive ir racionaly
spinduli. Metodas tinka visiems dviejy kvadrikiy bendry pozicijy atvejams. Konstrukcija
yra invariantiS§ka Laguerre geometrijos atzvilgiu: pavyzdziui, jungiamasis pavir§ius turi to

paties laipsnio racionaly ofseta.



