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ABSTRACT

In this paper we study the convergence of explicit and implicit finite difference scheme for
the first initial-boundary value problem for one dimensional quasilinear heat—conduction
equation with ”unbounded nonlinearity”.

INTRODUCTION

In recent twenty years a great interest was devoted to the construction and
analysis of finite difference schemes for approximation of boundary value prob-
lems with generalized solutions. In particular, finite difference schemes with
convergence rate estimates consistent with the smoothness of data were of the
major interest [7].

First results on the study of the convergence of discrete methods for prob-
lems with solution from Sobolev spaces were obtained in the theory of finite
element methods. However, the methods of constructing difference schemes
and obtaining consistent estimates differ from those applied in the finite ele-
ment method.

For a wide variety of linear problems convergence rate estimates consistent
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with the smoothness of data are presented in [7; 6; 9]. However, as a rule,
the most of actual problems are nonlinear, and the nature of the nonlinear-
ities is diverse. For quasilinear elliptic equations with bounded nonlinearity,
consistent convergence rate estimates have been obtained in [1; 3]. However,
the requirements on coefficients of equations, such as positive definiteness,
boundedness of partial derivatives over all values u € R"™, narrows down the
class of admissible input data of the problem.

The aim of this paper is to construct convergence rate estimates consis-
tent with the smoothness of data for finite difference schemes approximating
a nonlinear parabolic equation with generalized solution. Only minimal as-
sumptions on the coefficients of equation are used.

1. INITTAL-BOUNDARY VALUE PROBLEM

In the rectangle Q7 = {(z,t) : 2 € 2 =(0,1),0 < t < T} for some T > 0 we
consider the initial-boundary value problem for quasilinear heat—conduction
equation

% = % <k(u)%> ,  (z,t) € Qr, (1.1)
u(z,0) =up(z), z€Q, u(0,t)=u(l,t)=0, 0<t<T. (1.2)

Let us introduce the Sobolev space H®(Q2) of functions u = u(x), defined
on Q, and the anisotropic Sobolev space H*"(Qr) of functions v = u(x,t),
defined on Q7. Let H§() (Hy"(Qr)) denotes the closure of the set of in-
finitely smooth functions which are equal to 0 in the neighbourhood of z =0
and z = 1 in the space H*(Q2) (H*"(Qr)) [2].

DEFINITION 1.1. The element u of the space H>!(Q) ﬂH&’O (Qr), satisfying
(1.1) almost everywhere and equal ug(z) for t = 0 is called generalized solution
of the problem (1.1), (1.2).

Let us define the region of the exact solution M, and its neighbourhood D,:

My = {u suy <wu(z,t) < wug,(x,t) € @T}, (1.3)
Dy ={t:u —d <a(z,t) <us+6, (z,t)e KCQp}. (1.4)

We assume, that there exists the unique solution u(z,t) of the problem
(1.1), (1.2) in H>Y(Q71), uo € H(0,1), and k € C(D,), 0 < k1 < k(v) < ks
for v € D,,. Note that similar problems are considered in [10; 4].

u
Let us define the new function ¢(u) = [ k(w)dw and transform the equation
0

(1.1) in the form

ou _ 0%¢p(u)
E - 81’2 ) (.’L',t) € QT' (15)
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2. EXPLICIT FINITE DIFFERENCE SCHEME
Let us introduce uniform meshes
@, ={t;j =j1,j =0,jo,jor =T}, &n={z;=1ih,i=0,N,Nh=1},

and set w, =@, N[0,T), wp, = wp N(0,1) and wp, = wp X w;.

We define the discrete inner product (v, w), = >, v(z)w(xz)h and norms
TEWH
1/2 2 2
Ioll, = (0,0, Ille ) = maxees, [o(@)], loll;, = EZ 7o, Bl We use
wr

the standard notation of the theory of difference schemes [5].
We define the Steklov averaging operators [7]

t4+1

z+h/2
Sif(et) = / eyt sfen = [ s
x+h ,
siwn =g [ (1= o
z—h

and we approximate the problem (1.5), (1.2) with the explicit finite difference
scheme

ye = (0(Y)ze;  (2,t) € whr, (2.1)

y(2,0) = S2up(z), =€ ws, y(0,t) =y(1,t) =0, te€w,. (2.2)

Let us consider the convergence of finite difference scheme (2.1), (2.2) in
the discrete norm |[|-||,. . Let us denote & = S2u supposing that the solution
u(z,t) of the problem (1.5), (1.2) is oddly extended outside Qr, i.e.

—u(—x,t), € (—1,0],
ﬂ(:ﬂ,t) = ’LL(:L’,t), (07 1)
—u(2—x,t), [1>2)

It is easy to see [8], that

lill2es gy = SlulPrznopys @1 = {(@,8) i v € (~1,2),0 <t < T}.

Consequently, @ € H>'(Qr).
We define the error in the following manner z = y — @. This error satisfies
the finite difference scheme:

2t = (‘P(ﬂ + Z) - ‘P(a))fz — Nzz, (1‘,t) € Whry, N= St(p(u) - (p(’L_/,), (23)
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2(z,0) =0, 2 € wy, z(0,t) = 2(1,t) =0, te€w,. (2.4)

Let us define the space H of functions defined on the mesh @, which vanish
for z = 0 and # = 1. In the space H with inner product (-,-), and norm ||-||,
we define the linear operator Av = —vz,.

It follows from (0) = 0, p(u(0,t)) = ¢(u(1,t)) = 0 and the definition of
7 that n(0,¢) = n(1,¢t) = 0. Consequently, the problem (2.3), (2.4) can be
represented in operator form

2zt + Akz = An, t€w,, z(0) =0, (2.5)

where ¢( + 2) — p(@) = afzk:(w)dw =k(a+0z)z =Kz, 0 € (0,1).

u

Theorem 2.1. Suppose there exists the unique solution of the problem (1.1),
(1.2) in H>Y(Qr), k € C(Dy), 0 < k1 < k(v) < ko for v € Dy,. Then,
k1
16k2
solution of the finite difference scheme (2.1), (2.2), which converges to the
solution of the problem (1.1), (1.2) as h,7 — 0 and for every t € w, the
following estimate

for sufficiently small h < hg, T < 19 and T < h? there exists the unique

h?+r
12l ) < MW“]‘;“C(’DH)”UHHZJ(QT) <46 (2.6)

holds.

In the sequel, M denotes a positive generic constant, independent of h and 7.

Proof We shall prove the assertion by means of mathematical induction.
Evidently, for ¢ = 0 the estimate (2.6) holds. Suppose that for all ¢ =
0,7,...,t the solution y(z, ') of finite difference scheme (2.1), (2.2) exists and
estimate (2.6) holds. We will prove the same for ¢’ = ¢+ 7.

Firstly, we show that u + 8z € D,,. Obviously,

z+h
1 "—
U —up = 7 / <1— [ h a;|> x (u(x',t) —uy)dz' >0,
z—h
z+h

I_
a—U2:l / <1—|mhx|>(u(m',t)—U2)da:'§0.

h

z—h

Consequently u € M,,. Since [|2(-,t)l¢(,,, < 6, it follows that @ + 6z € Dy,
and the value k = k(@ +62) is defined and 0 < k1 < K < k2. In such a manner
the values z (and y) for ¢ =t + 7, are defined.
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We estimate ||z(-, + 7)||¢(,,) by the energy method. Multiplying (2.5) in
a scalar way with 27A~ !z, we obtain

A2 2 2
12540 = llzlla-r = 2 ll2elly-1 + 27(k2, 2) = 27(n, 2).
Substituting z; from equation (2.5), we obtain
12 2 2
12631 = llzlla-0 + 27(w2, 2) = 72 [|62 + [y + 27(n, 2). (2.7)
Using inequalities

8k3, 2 8, 2
52 +nll% < 2[|s21F + 20l < =2 1zl + 2511l

2 1 2 2
2r(n2) < Bzl + 7o-lmllh, - 27 (62, 2) 2 27kn|2l,,

we obtain

N 8tk 1
a0 = i+ (b = S Y el < 7 (2 + 3 ) il 29

Omitting positive the term with ||z]|, in the left side of (2.8), we obtain
2 2 1, 8 1 k)« >
o0 < el br (4 55 ) Il < (5 + ) 7l OOl 29

t'=0

Using representation

n=m +mn = (Sip(u) — Sip(u)) + (Sep(u) — ¢(a)),

and inequalities [|v| y—1 > 0.5h[[v||;, and ||v[|¢(,, ) < A~ 12||v]|,,, from (2.9) we
obtain

X 4 (1 i
||z||é<wh)sﬁ(— 2k2>272(||m DE 4+l #)E)-  (210)

t'=0

Further

t +T
mat) = 1 [ Telutet) - olate.r)a”

1 t'+1  pu(z,t” t'+1
= - / / o' (w)dwdt" = / / w)dwdt" .
T t (CI? t”) t U(CE t”)
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From here it follows
1 t'+T1
mle ) < Flklew. [ lute.t") = ale, ) jdt”
tl

1 t'+1 x+h |.’E’ _ .’IJ|
= ||k 1_ £ — " da! | de
ke, [ [ (1= ) e ) — e ) da

1 t' T
= —|Ik
e, |

o+h "
[, -5

% /z /z 82'“('75”,7t”)dmmdmudx/ dt”,
' Jz 31’2
and
Mh? 0%u
Im (z,1")] < &l ) : (2.11)
Vhr (P || 92 Ls(e)

where e = (z — h,z + h) x (¢,t' + 7). In an analogous manner we obtain

Mt
Ina(z, )] < —=llkllc(p.) (2.12)

Vhr

u
ot

Lz(e) -
It follows from (2.10), (2.11) and (2.12) that

W+
I2Cot+ Tl ey = 1l £ M =575 1kllcn)llull gz or
(wn) — (wn) B3/ ) )

Choosing sufficiently small h and 7 we finally obtain [|z(,t + 7)|l(,,, < -
|

Theorem 2.2. Let the assumptions of theorem 2.1 are satisfied. Then the
following estimate

ly =l < MO +DllEll g ol 2. o) (2.13)

holds.

Proof From (2. 8) summing over the mesh w, and using inequality
ki — 87k3/h? > %L we obtain

T—1
1 k
oG T) B+ TZuznh (f o) Dl e
27 t=0
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Applying to (2.14) estimates (2.11) and (2.12) and omitting the term
I2(-, T) |4~ we obtain (2.13). W

Since the solution u is a continuous function it is interesting to estimate
the difference y — u.

Theorem 2.3. Let the assumptions of theorem 2.1 are satisfied. Then the
following estimate holds

ly = wlly, < M2 +7) (Il oo, + Dl (215)

3. IMPLICIT FINITE DIFFERENCE SCHEME

We assume, that there exists a unique solution u(z,t) of the problem (1.1),
(1.2) in H*3/2(Qr), and ug € H?(0,1), k € C(Dy), 0 < k1 < k(v) < ks for
v € D,.

We approximate the problem (1.5), (1.2) with implicit finite difference
scheme

Yt = (a(y)g)f))m, (xvt) € Whr, (31)
y(o)t) = y(l)t) =0, tew,, y(a:,O) = Szuo(ﬂf), T € Wh, (32)

where a(y(z)) =k ((0.5(y(x) +y(z = h))).

Let us consider the convergence of finite difference scheme (3.1), (3.2). Hav-
ing the solution u(z,t) of the problem (1.5), (1.2) oddly extended outside of
Qr, suppose that 4 = S2u. The following identity takes place

ar = Sy <k(u(a: - 0.5h,t))%(m - 0.5h,t)> . (3.3)

T

Using the identity (3.3), we can write a problem for z = y — @ in the form

2t = (a(y)éf)z + ((a(y) - a(ﬂ)) ﬁi)m + Th(xat), (x>t) € Whr, (34)
2(0,t) = 2(1,t) =0, t € w,, 2z(z,0)=0, z € wp, (3.5)
where
n(z,t) = (a(u)uz)(x,t) — Sik(u(z — 0.5h, t))%(m —0.5h,t).

For our convenience, let us represent n(z,t) as below

t+7
n(z,t) = % / { [a(a(z,t)) — k(u(z — 0.5h,t"))] Gz (z,t+7) + k(u(z—0.5h,t"))
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X gz, t+ 1) — %(a: —0.5h,t") }dt'
T b) 8[1,' . )

t+1
1
=— / {m (x, t,t" )iz (z,t +7) + k(u(z — 0.5h,t"))n2(z, t, ')} dt'.
-
t

First, we shall estimate 1, (z,¢,t"). For this purpose, we shall take an advan-
tage of the obvious identity

1 z z'+0.5ha
Uz (z,t+7) = 5 / / 8—Z(x", t+7)dz" dz'. (3.6)
xz—h x'—0.5h
Using (3.6), we obtain
! _ (311, ,
772(.75,t,t ) = Uf(mat +7') - %(JJ - 0.5h,t)
1 z z'+0.5h 5 5
= 3 / (Fo@" t+7) = 5= (@ = 0.5h,¢))da"da’
z—hz'—0.5h

z ' +0.5ht+T1

1 d%u 1110\ 3400 3 0 7 1
= 5 M(a: , ) dt"dz" de'nonumber  (3.7)

z—ha'—0.5h t'
z z'4+0.5h z"

]‘ " m 62u nro4l nr " !
+ 2 (" —x )W(m , ) dz"" dz" dz’ . (3.8)

z—ha'—0.5h £—0.5h

Integrating |na(z,t,t')| over t' € (t,t + 7), applying the Cauchy—-Schwartz—
Bunyakovskii inequality and taking into account the estimate (3.8), we obtain

hvh

+
L2 (6) \/?

9%u
otozx

t+1
1 VT
= T, t+ 1, t)|dt < Y=
Tt/lm( ar < L

Au

| - (39

Lx(e)

where e = (z — 1.5h, x + 0.5h) x (¢,t + 7).
To estimate 1y (z,t,t'), we use the relation

’

_ , , 1 z T 5
U(.’I} _ 05h,tl) — ’U’(II’. h7t2) + ’U,(.T,t ) _ 5 / / %(m”,tl)dm”d.’lf'l.

x—0.5h ' —0.5h
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Then the following expressions are valid

mlz,t,t = a(u(z,t)) — k(u(x — 0.5h,t
! k 0.5h, t'
< L|0.5(a(z — hyt) + @(z,t)) — u(z — 0.5h,t")]
L
< 5‘11(:6 —ht) —u(z — ht') + (e, t) — u(z,t)
z 2’ )
+ / / %(w",t')dw"dm'
z—0.5h ' —0.5h
I 1 z+0.5h t 5
u
< Z(|z OU v iy gt .0
- 2(‘h / 6t(x’t)dtdw
2—0.5h #
1 z+0.5h z’ 82 82
+ n_ o n(9 % oy o, IN g T
+‘h / /(a: x)(6x2(x’t)+6x2(m h,t")dz" dx
z—0.5h =

).

Integrating |n (x,t,t")| over t' € (t,t+ 7) and taking into account the inequal-
ity (3.10), we obtain

t+1
1
_ / |771(33;t,t’)|dt’ < L (ﬁ
T

t

T I, 5
+‘ / / %(m", t")dx" dx’

x—0.5h ' —0.5h

h3/2

_|_
LQ(E) \/7_—

0%u

da?

du
ot

N LM) . (3.10)

It is not easy to show ([2], vol.2, pp.10-11) that

eyt +7)] < max [ (o, 4+ 7)| < Mlu(, 1 47)
ze|0,

o gy (3:11)

Combining the estimates (3.8), (3.10), (3.11), we obtain a priori estimate
for n(x, t)

t+7
1
] < fstet+ )l [ sl
t

t+7
1
@, > / (et E)dE . (312)
t

Then summing 7(z,t) over the grid points {@w,\{t = T}} x {@w,\{z = 1}}, we
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obtain
T—71 1/2 3
(ZTMW) <:M<\$ G )
t=0 L2(Qr) Lo L2 (@r)
X (||u(-,t+ igya72gm) + 1) . (3.13)

Theorem 3.1. Suppose there exists the unique solution of the problem (1.1),
(1.2) in H>3/2(Qr), k € C(Dy), 0 < ki < k(v) < ko for v € D,. Then, for
sufficiently small h < hg, T < 19 there ezists the unique solution of the finite
difference scheme (3.1), (3.2), which converges to the solution of the problem
(1.1), (1.2) as h,T — 0 and for any t € w, the following estimates

Izl < MR + 7)lully s 212 = Il + 71 [l2a)l”,  (3.14)

(Qr)’

lellorny < M(h+ VD)l s gy < 6 (3.15)
hold.

Proof We shall prove the assertion by means of mathematical induction.
Obviously, that for ¢ = 0 the estimates (3.15), (3.14) hold. Suppose that for
all ¢ = 0,7,...,t the solution y(z,t") of the finite difference scheme (3.1),
(3.2) exists and the estimate (3.15) holds. To prove the same for t' =t + 7,
we shall use the energy method. Considering an inner product of (3.4) and
27Z, we obtain the energy identity

2117 = 11211 + 7 ll2ell” + 27 (a(y) 22, 2] + 27 ((aly) — al(@))ita, 2] = =27(n, ).

Then
27(a(y)2z,2z) > 27k ||2f]|27

MRl 2
+ 2k1M L ||u||W23'3/2(QT) [E T

o TR . 52 T 2
2r(n,22) < 5 111" + 5= |

Summing over these estimates, we get the energy inequality

1215 < A+7M)|lz] + 5 ||77]|
t
< MY T ) <MZ ()| (3.16)
t'=0 t'=0

Substituting the estimate (3.13) into (3.16), we obtain (3.14). The inequality
(3.15) follows from Theorem 1 ([11]). W
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BAIGTINIU SKIRTUMU SCHEMU, APROKSIMUOJANCIU
SILPNUOSIUS NETIESINES SILUMOS LYGTIES
SPRENDINIUS, TIKSLUMO IVERCIAI

B.S. JOVANOVIC, P.P. MATUS, V.S. SHCHEHLIK

Nagrinéjami vienmateés netiesinés Silumos laidumo lygties skaitiniai sprendimo metodai, kai
lygtis turi tik silpnaji sprendini. Lygties koeficientai yra stipriai netiesiniai. IStirtos is-
reikstiné ir neisreikstiné baigtiniy skirtumy schemos. Aproksimuojant funkcijas panaudoti
Steklovo vidurkinimo operatoriai. Gautieji paklaidy iverciai yra suderinti su diferencialinio

uzdavinio sprendinio glodumu.



