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ABSTRACT

For the solution of weakly singular integral equations by the piecewise polynomial
collocation method it is necessary to solve large linear systems. In the present paper a
two-grid iteration method for solving such systems is constructed and the convergence of
this method is investigated.

1. INTRODUCTION

Consider the linear integral equation

b
u(t) = /K(t,s)u(s)ds+f(t), 0<t<b, (1.1)

where b > 0 and f:]0,b] — IR is a given continuous function. Throughout
this paper we shall suppose that the kernel K has the form

K(t,s) = a(t,s)k(t — s) (1.2)

where
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(A1) the function (1) is m — 1 times (m > 1) continuously differentiable with
respect to T for 7 € [—b, 0] \ {0} and such that the estimates

KB (D) < be|r|7*7 %, k=0,1,....m—1, (1.3)

hold with 0 < o < 1 and some positive constants bg, by, ..., by for all
T € [=b,0]\ {0};

(A2) the function a(t, s) is m times continuously differentiable on [0, b] x [0, d]
and [0,d] x [d, b], where d is a fixed point in the interval (0, b).

Let C*(X) denote the space of k times continuously differentiable functions
22X 2R, X CIR = (—00;00), C(X) = C°X), and set

Eom = {u € C[0,6] N C™(0,d) N C™(d, b) :

sup |U(m) (t)| < OO}
0<;§b t—(at+m—1) + |t _ d|—(a+m—1) + (b _ t)—(a+m—1) )

E*™ is a Banach space under the norm

[l | om = max [u(t)]+ @)
B = G MIT T, i avm—0 = g|-(a+m—1)  (b— )~ (atm—D)
t#d

Note that C™[0,b] C E“™. It follows from u € E®™ that u € C[0,b] N
C™(0,d) N C™(d,b) and the estimates

|u(k) ()] < cx [t—(a-i-k—l) + )t — d|—(a+k—1) +(b— t)—(a-i—k—l)]’ k=1,....m,

hold with some positive constants c¢i,...,¢, for 0 <t < dand d <t <b.
The following result (see [11,12,8]) characterizes the regularity properties
of solutions of equation (1.1).

Lemma 1.1. Let the assumptions (A1) and (A2) about the kernel (1.2) hold,
and let f € E®™. If integral equation (1.1) has an integrable solution u €
L'(0,b) then u € E®™.

Remark 1.1. If the conditions of Lemma 1.1 are fulfilled with a € C([0, b] x
[0,b]) then the estimates (1.4) for the derivatives of the solution u(t) of equa-
tion (1.1) can be specified (see [11]).

An effective method for the solution of equations (1.1) with kernels (1.2)
is the piecewise collocation method on graded grids. By this method the
interval of integration is partitioned into suitable small subintervals and the
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approximate solution is researched in the form of a function which on every
subinterval is a polynomial of the same degree. Such a collocation method
for equations (1.1) with kernels (1.2) is investigated in [6]. It is shown there
how to choose the non-uniform grid so that the method might have the best
convergence rate in supremum-norm (see Theorem 2.1 below).

In order to calculate the approximate solution by the piecewise polynomial
collocation method it is necessary to solve large linear systems. In the present
paper a two-grid iteration scheme is presented for the solution of such systems
and fast convergence of this method is shown (see Theorem 3.1 below). Note
that similar two-grid iteration methods are considered in [1-5,9,10,12,13].

2. COLLOCATION METHOD

Let N e N, r € R, r > 1. We introduce in the interval [0, b] the following
4N + 1 grid points {t;N)}:

(N) _ (4\"d s .
i = () 4, j=0,1,...,N;
thy =d -ty j=1,...,N—1;

']T _ .
Gy = () =01, N
j=1,...,N.

Here r > 1 characterizes the degree of the non-uniformity of the grid. If r =1
and d = b/2, then the grid points (2.1) are uniformly located in the interval
[0,b]. If r > 1 then the grid points (2.1) are more densely located towards the
points 0, d and b.

We determine the collocation points {5](1;)} in the following way. We choose
in the interval [—1,1] m points ny,. .., 0m,

1< <. < <1, (2.2)

and set

Ny Mgt 1, (v N
€0y Lo )

5 g=1,...,m; j=1,...,4N. (2.3)

Note that €)= ¢ =t i = 1, pp =1 (j =1,...,4N — 1).
For a contlnuous function u: [0,b] — IR we construct a piecewise polynomial
interpolation function Pyu:[0,b] — IR as follows: on every interval [¢ [ i 1, ;N)]

j=1,...,4N) Pyu is a polynomial of degree not exceeding m — 1, and
2 g
(Prvu)(EN) =u(E@D)), g=1,...,m; j=1,...,4N. (2.4)

Thus, the interpolation function (Pyu)(t) is uniquely defined in every in-

terval [t; i,t; )] (j =1,...,4N) separately and may have jumps at t = tg-N),
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j=1,...,4N —1. If p = —1, n,, = 1, then Pyu is a continuous function on
the interval [0,b]. We can define (Pyu)(t) by the formula

(Pru)(t) = D ul€hy)efy @), te [t 6], j=1,... 4N, (25)
q=1
where ap( )( t),t € [t(,l, EN)] qg=1,...,m;j=1,...,4N, are the polynomi-

als of degree m—1 such that
N , D=
(p.]’q (6( )) { 0 Z#Z }7 p7q:]‘7"'7m' (2'6)

Let us denote by En the range of the operator Py = Pj(vm), Py:CJ0,b] —
Ey; thus, En is the space of plecewise polynomial functions uy which on
every interval [t; (¥ 1,t(N)] (j = 1,...,4N) are polynomials of the degree not
exceeding m — 1

We look for an approximate solution uy € En to integral equation (1.1).
We require that un should satisfy the equation (1.1) at the collocation points
(2.3):

b
un(t) — [ K(t,s)un(s)ds — f(t) =0,
e (2.7)
p=1,....m; +=1,...,4N.
By the representation (2.5), we can find uy € Ey in the form

un(t) =Y MMy, e 1N, 1M, =1 ,4N,

q=1

where, as it follows from (2.6),

¢iy =un(§, ), a=1,...,m; j=1,...,4N.

Now the collocation conditions (2.7) will take the form of a system which
determines the coefficients cgg) = uN(fZ(’IZ)):

A S S 4 @), =t =1, AN, (29)

j=1¢=1

where
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If ;m > —1 or n, < 1, then all collocation points fj(f;r) (¢ = 1,...,m;
j = 1,...4N) are different and there are 4mN collocation points. In this
case the system (2.8) (system (2.7)) has 4mN = dim En equations and the
same number of unknowns. If 77 = —1, n,,, = 1, then part of the collo-
cation points will coincide. The number of different collocation points is
[AN(m — 1) 4+ 1] = dim En and the system (2.8) (system (2.7)) has the same
number of equations and unknowns.
On basis of Lemma 1.1 in [6] the following convergence result is proved.

Theorem 2.1. Assume that the following conditions are fulfilled:

1) the kernel (1.2) satisfies the assumptions (A1) and (A2);
2) f € Ev™;

3) the homogeneous integral equation

b
u(t) = / K (t, 5)u(s)ds (2.10)

has only the trivial solution v = 0;

4) the collocation points (2.3) with interpolation points (2.2) and grid points
(2.1) are used.

Then the equation (1.1) has a unique solution u* and there exists an integer
No € N such that, for N > Ny, the collocation conditions (2.7) define a unique
approzimation uy € En to u*. The following error estimates hold:

R

r(l—a) m_
sup |uj () —u*(8)] < c { hy' o Jor lsrs o (2.11)

m m
h; for >t

where r is the scaling parameter of the grid (2.1), ¢ is a positive constant
independent of N (but dependent on r), and

d b—d

Remark 2.1. Tt is shown in [6] that at special collocation points a more rapid
convergence (superconvergence) takes place.

To apply the collocation method it is necessary to solve the linear system
(2.8). We write this system in the form

un = Tnun + fy, (2.13)
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where

N)

(¢

)yeos FENDY, F(ES

(N) (N)

(N)
1,1

N)
1

7N = (f(f

are vectors and

Voo esClmsCals-
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(N)
3 Comy e -

(N) (N)
yCaN 1 CANm

)

o FENLD)

(N)
4N,1

oo FEND) - £

(N)

Tn = (ai’p’j’q) (2.14)

is a matrix with elements (2.9) in the following form (a;p j,, = alh) p =
: 2,P,J,4 %,0,7,9°

4N):

ai,1,1,1 ai,i,1,m ai,1,2,1 ai,1,2,m ai,i,n,1 ai,1,n,m
ai,m,1,1 ai,m,1,m  A1,m,2,1 a1,m,2,m ai1,m,n,1 ai,m,n,m
az,1,1,1 a2,1,1,m a2,1,2,1 az2,1,2,m az,1,n,1 a2,1,n,m
a2,m,1,1 a2,m,1,m  A2,m,2,1 az2,m,2,m az2,m,n,1 a2,m,n,m
an,1,1,1 An,1,1,m an,1,2,1 an,1,2,m An,1,n,1 An,1,n,m
An,m,1,1 . An,m,1,m QAn,m,2,1 . An,m,2,m - An,m,n,1 - An,m,n,m

Usually the number of equations in (2.13) is large and, as a result of this, direct
solving of (2.13) is rather complicated. An effective method for solving this system

is a two-grid iteration method.

3. TWO-GRID METHOD

In addition to the original grid corr

esponding to N € IN (see (2.1)), we define

by (2.1) the coarse grid, corresponding to an integer M € IN, M < N. More

precisely, we choose N and M so th

every subinterval [t;-]ﬂ,tj(.m] (j=1,.

[t 0] (i =1,...,4M) of the coa

i—11%

at N/M is an integer greater than 1. Then
..,4N) is fully contained in some subinterval

rse grid.

For solving the system (2.13) the following two-grid iteration method is used:

1

EN:
EMZ(IM—TM
uy =Ty Ty -

—1 —1 i
uy —TNuy — fn,

)" 'Ry TNy,
b, 1=0,1,...,

M >

(3.1)

where i(}v is the initial guess of wy, Ins is the identity matrix, Ry, a: RN 5 RM
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(dy = dim Ewn, dy = dim Ejy) is the restriction operator defined by

(N)
aN m [

Ry Twoy) (€)= 3 S | [ K@ 9w ()ds | v (€5), 5,
J=la=1 \ (N) ( . )

j—1

p=1,....m; i=1,...,4M,
and Qu,n: R — IRV is the prolongation operator defined by

@unin)(,) = 3 w6 el €3 gy e BR80T

p=1
t1=1,...,4M, qg=1,...,m; j=1,...4N.

Here vly (6%)), (Rn v Tnly)(€5)), whi(€2)) and (Qun@h,)(€L7) are the cor-
responding components of the vectors Ty, Ry, mTnThy, Way and Qar,NWar, respec-
tively. The ordering of the components of these vectors is the same as that one for
the vectors Tx and f, above (see (2.13)).

Similar two-grid iteration methods are considered in [1-5,9,10,12,13]. Our treat-
ment will follow the approach of [10].

We write the integral equation in the form

u=Tu+ f (3.4)
where
b
= /K(t,s)u(s)ds. (3.5)

The collocation conditions (2.7) are equivalent to the operator equation
uny = PNTun + PNf, (36)

with operators Py: C[0,b] — E, introduced in Section 2. Using (A1) and (A2) we
can establish the following result.

Lemma 3.1. Let the conditions (A1) and (A2) about the kernel (1.2) hold,
and let the collocation points (2.3) with grid points (2.1) be used. Then for
every choice of collocation parameters (2.2),

IT = PNT|| oo 0,0) 1 (0,6) < chN %, (3.7)
where hy is defined in (2.12) and the constant c is independent of N.

In order to give to the method (3.1) a more convenient form for convergence
analysis, we introduce the operators Roo,n: En — RN and QN0 RN — Ex by
the following equalities:

N N N N N N
Roovu = (u(€)), . u(€N), u(€S)), . ul€h)), . u€N), - ul€N)
(3.8)
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for u € En, and

(@ 00N (¢ Zu EPN @), te M), e, j=1,...,4N,
for

— N N N d

un = (un (€N, un (€0, un (€N, un (E58)) € ROV,

Actually, we shall use the definition (3.8) for applying R n to all functions u(t)

which are defined at ¢t = SJ(‘,]Z)v q=1,...,m; j=1,...,4N. For later use, introduce

l =11 1 —

Uy = QN,00UN, VN = QN,00UN, W = QM,00Wis,
where [ = 0,1,..., and Wy and u""1
X € RN, Then

are determined by (3.1) for a initial guess

1 1 —1 1 — 1
Uy = Reo,Nuy, Uy = Roo,NUn, Wy = Roo,Mwyy,

Roo, NQN, =1In, @QN,00Rso,n = Pn,
RoonTQN,0o =Tn, QN,00Qum,N = QM ,o0-

Using these notations and identies we can rewrite formulas (3.1) as follows:

Uév—'UzN PNTUN PNf)
wh; = PyTwh, + Py Toly, (3.9)
ulN“:ulN—UﬁV—wf\/[, 1=0,1,....

Whereas v = Qn.cotx € En we also have vy € En, wh, € Exy C Exy and
uf' € Ex, 1 =0,1,.... Therefore the methods (3.1) and (3.9) are equivalent. At
the same time the method (3.9) is an iteration method to solve (3.6).
We are now ready to prove the following result about the convergence of the
two-grid method (3.1).

Theorem 3.1. Let the assumptions of Theorem 1.1 hold. Then there exists an
integer Mo > 0 such that, for N > My, the system (2.13) has a unique solution
un,o. The two-grid iteration method (3.1) convergences to this solution for
M > My, N/M =2,3,..., and for every choice of the initial guess u% to:

[@* — TN olloo < const hi @y —@nollo, [=0,1,..., (3.10)

where hyy = max{d/2M,(b—d)/2M} and

[lZN]]co :j max

—1,....AN;q—=1,. 7m‘ 3»q ‘ . (3.11)
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Proof. It follows from (Al) and (A2) that the integral operator (3.5) with the
kernel (1.2) is a compact operator on L*°(0,b) to L*(0,b) [7]. As the homogeneous
equation v = T'u has only the trivial solution v = 0, the operator I —T: L>(0,b) —
L>=(0,b), with the identity operator I, has a bounded inverse (I —T)~': L°°(0,b) —
L*(0,b). By Lemma 3.1, ||T' — Py T||po(0,p)>L(0,6) = 0, if har — 0. Therefore
there occurs My > 0 such that for all M > My, (I — PyT)™': L*=(0,b) — L*°(0,b)
exist and their norms are uniformly bounded:

||(I — PMT)71||L00(0,b)*>Loo(0,b) < const (M > Mo). (3.12)

It follows from this that (2.13) has a unique solution un,0 € En for every N > M.
Consequently, for M > Moy, N/M = 2,3,..., and for a initial guess u € En to
unN,0, the formulas (3.9) define a sequence of elements uly € Ey, 1 =1,2,..., and

u ! —uno = (I — PuT) ' (Pxy — Pu)T(uly —unp), [=0,1,.... (3.13)
Indeed, we have

(I = PuT) (" —uno) = (I — PuT)[uly — viy — why —uno] =

= (I = PuT)[PnTuly + Pnf — (I — PuT) ' PuTvly —unp] =

= PyTuly + Pnf — PyTPxTuly — PyTPxf — PyToy —uno + PuTuno =
= PyTuly +uno — PvTuno — PyuTPyTuly — PyTPxf — PyTuly+
+PyTPyTuly + PyTPyf —uno + PuTuno =

= PNT(UIN — UN,O) — PMT(uév — UN,()) =

= (PN — PM)T(UIN — UN,0)~

Applying (I — PyT)* to the identity (I — PaT)(ull" —un,0) = (Px — Par) (T (uly —
unN,0), we obtain (3.13). Further, using Lemma 3.1,

[(Px — Pr)T||poo 0,6)— 22 (0,0) < ||T n PNTl|1L°<>(o,b)—woi(o,b)+
HIT = PuTl|ro op)» L= 0p) < elhy @ +hy *) < chy

with suitable constants ¢ and ¢’. Combining this and (3.13) and (3.12) for M > Moy,
N/M =2,3,..., we have

lu* = unollz o) < by *lluy —unollzeop, [=0,1,..., (3.14)
with a constant ¢’ which is independent of M, N and I. The estimate (3.10) now
follows from (3.14) because

@' —anollso = l|Roo, v (un" = un0)lloo < Jun" — unollso

and

1

lluly = un.olloo = [|Px.0o (i — un.0)lloo < ¢ [[ilx —Tin.0]oo0

with a constant ¢’ which is independent of N. l
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SILPNAI SINGULIARIU INTEGRALINIU LYGCIU SPRENDIMAS
DVITINKLIU ITERACINIU METODU

K. Hakk, A. Pedas

Sprendziant silpnai singuliarias integralines lygtis gabalais polinominiy kolokaciju meto-
du tenka spresti didelés dimensijos tiesiniy lygGiy sistemas. Siame darbe tokios sistemos
sprendziamos dvitinkliu iteraciniu metodu. IStirtas iteracinio metodo konvergavimas, gauti
konvergavimo greicio jverciai.



