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ABSTRACT

In the present paper a mathematical model of creation plasma spray coating with the
given properties is developed. The flattening and simultaneous solidification of a liquid
particle upon its impingement onto a solid surface has been mathematically described and
numerically simulated. Numerical simulation has been accomplished on the basis of the
full Navier-Stokes equations in cylindrical co-ordinates. Heat transfer process in particle
and substrate has been simulated by 2-D problem heat conduction taking into account
hydrodynamic processes into molten particle and forces of pressure. Particle solidification
has been described by means of one-dimensional Stefan problem. It was investigated the
effects of some important processing parameters such as impact velocity, droplet diameter,
pressure and temperature of plasma on the flattening and solidification of a single liquid
particle. Calculations computational algorithm on the basis of finite-difference method
were created and a complex of applied programs was developed.

1. INTRODUCTION

Working features of plasma coatings to a considerable extent depend on the
character and conditions of interaction of particle of spraying powder with
substrate [4,10]. A theory of physico-chemical interaction of materials shows
that in the process of spraying the features of coatings are defined by tem-
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perature, pressure caused by impact, duration of interaction, state and the
shape of its surface. The solid substrate and the area of contact are the main
parameters needed for estimation of kinetics of chemical interaction between
spraying particle and substrate. In view of highly limited duration of interac-
tion of particle with substrate and small their dimensions (not over 200u) any
experimental measurements of contact temperature are extremely difficult.
More perspective direction of problem solution is mathematical modeling.
One of the most important criteria under creation of mathematical model is
the choice of common mathematical base allowing to consider different influ-
ences on melt, to describe broad class of problems, and to give an opportunity
to investigate different entrance parameters of plasma spraying without signif-
icant rebuilding of model as well. Taking into account the complexity of the
system of equations we put equations of mass and energy conservation in the
base of investigations. Flattening and simultaneous solidification is charac-
terized by fast change of dynamic and thermal states. Previous investigations
were limited either by study of simplified models or by solutions of problems
modeling separate stages of the process [3,9]. Investigations [7], which were
based on description of liquid movement with the aid of main laws of conser-
vation (the Navier-Stokes system of equations for non-compressible liquid),
made a significant impact on the semi-empirical models development. Most
complete processes of flattening and solidification of particle were presented
in recent works of R.H. Rangel [6]. However in existing investigations [2,8] the
effects arising under dynamic impingement (especially under large velocities
of particles) and the change of density owing to large gradients of pressure are
not taken into account. In previous works they used the Oberbek-Bussinesk
approximation. The legitimacy of this model under small temperature gra-
dients (Br|T — To| << 1,Br is a coefficient of temperature expansion) has
not given rise to doubt. The last condition restricts the limits of the model
application and it depends on input data of system, in particular on initial
particle velocity.

Preliminary analysis [1] of head-on collision with large velocity of droplet
has shown that it is necessary to take into account the compressibility of
liquid in constitutive equations. The consideration of indicated effects led
to necessity of molten particle flattening process description with the aid of
viscous compressible liquid conservation laws. Besides, the correct mathemat-
ical flattening process description demands the of system complete flattening
equations and energy equation, which describe the energy transfer and change
of velocity and density. Hence, hydrodynamic problems of such type should
be considered together with problems of phase change.

2. MATHEMATICAL MODEL

Schematic presentation of the initial configuration of problem is given in fig.1.
The mathematical model developed in this paper is based on the following
assumptions:
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Figure 1. Initial configuration of the problem.

- fluid flow is laminar and compressible,

- axisymmetric system of coordinates is used,

- impingement is perpendicular to the substrate,
- the particle doesn’t rotate during the fall,

- in the initial moment the particle is molten,
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- one-dimensional heat conduction is assumed for solidification process,

- the contact of the particle with the substrate is ideal,

- the substrate is a cylinder and the initial temperature 7T is constant,

- the surface of the substrate is smooth.

Following the above assumptions, the governing equations for the axisym-

metric system of coordinates may be written as follows.

For the description of deforming particle molten material movement let’s use
full Navier-Stokes system of equations for compressible viscous liquid written

in natural variables ”velocity-pressure”: the mass conservation law

dp B
E‘Fﬂ(p-V)—O,

the movement quantity conservation law

p-V)

T +A(pVV) = —VP+V(MVV) + gp,

the energy conservation law

W +A(pE-V)+V(P-V)=V-(\T)VT),

(2.1)

(2.2)

(2.3)

where E = I + Ej;, is the specific complete energy, I = ¢(T')T is the specific
internal energy of the particle, Ey;,, = v%/2 is the specific kinetic energy
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of the particle, A is the material thermal conductivity, p, P, T, u are density,
pressure, temperature and kinematic viscosity of the fluid respectively, and
pg represents the body force per unit mass.

To complete the problem formulation of the we should add the state equa-
tion P = f(p,T).

Under movement of continuous medium the surfaces is called free if surface
tensions are balanced at the expense of surroundings pressure. As far as
liquid borders upon gas, density of which is small, border ”liquid-gas” is a
free surface. The shape of the free surface as a rule is unknown beforehand
and is defined in the course of problem solution that essentially complicates
the numerical algorithm.

In order to define the domain occupied with liquid, i.e. to define a free
surface I' a scalar function F is introduced. It defines the fraction of cell
volume occupied with the liquid [7]. It is supposed that F' = 1 when a cell is
fully occupied with the liquid and F = 0 in the case of empty cell. The cells
with 0 < F' < 1 contain the free surface.

For the function F' the following equation is true

OF

— +(V-V)F =0. (2.4)
ot

The Laplace conditions are true on the free liquid surface I' defined with the
help of function F

(P—Py)n, =or,n, +o,.n. + ok + ko).,

(P—Pyn, =0, n. +o,,n,+ ok + k2)n.,

where P, is the pressure in the gas surrounding the liquid, P is the liquid
pressure on the free surface, o is the surface tension coefficient, ki, ks are
the curvatures of main normal surface sections,n,,n. are the projections of a
single normal vector to a corresponding coordinate axis, o’ ,0..., 0., are the
derivatives of the stress tensor components[5].

The heat exchange conditions are established for the temperature T on
a free surface I' . These conditions reflect the influence of the surrounding
temperature on the particle. We use the condition

zzrerr

oT
/\(T)%h =ar(T —T,)|r,

or the condition of heat transfer with radiation

oT
AMT) 5l = ar(T = Ty)lr + Boo(T* —T,)|r-

The coefficient of heat transfer ar characterizes the heat exchange on outer
side of frontier layer and it is defined from the formula a7 = Nu-Ay/(Do-v/frn),
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where f), is the coefficient of powder shape Dy is a diameter of a particle, A4 is
the coeflicient of heat conductivity of gases mixture (plasma) under tempera-
ture Ty) Nu is Nusselt number defined by the modification of Rantz-Marshall
formula, and it depends on the temperature in cells of the free surface.
Using the assumption relative to the model of heat process in substrate
and the symmetry of the problem let define the temperature field by means
of one-dimensional non-stationary quasi-linear equation of heat conductivity

6T‘sub
ot

psubcsub =V. (Asub (Tsub)VTsub)- (25)

In practice massive solids are used as a substrate, they are large in com-
parison with particle dimensions. In order to save a time of calculation it is
appropriate to limit the dimensions of computation domain or mesh in sub-
strate. We define the limits from the following condition: a heat introduced in
substrate by means of plasma flow through the particle must not exceed the
temperature of lower border of calculation domain more than 5% relatively
to the initial substrate temperature. Let assume that substrate is a cylinder
(fig.2) with a constant initial temperature. The altitude of the cylinder is de-
fined from the condition of non-warming up its lower base, and the upper base
is equal to the area of contact of molten particle with substrate. Boundary
conditions for hydrodynamic problem should satisfy the following demands:
on a solid surface (at initial moment — it is a substrate z = 0, at the follow-
ing moments — it is a border between solid and liquid phases of particle) the
condition of slip is established for velocities field, using movement equation
we get the condition for pressure 9P/0z = —1/Fr?, hence the condition for
the density follows from the state equation as well: on surfaces r = R4, and
2 = Zmae the boundary conditions of undisturbed flow are taking place

dp
=0, v=0, =t|l._y =0,
u ) v ) 8Z| Zmaz
or, o, 0P, 0
or r=Rmax — Y5 0z 2=Zmax — s

on symmetry the line r = 0 the following conditions are defined

ou o°rP

ar T or

oT
0,A\(T)=— =0
) ( ) 87" Y
for z = 0 (on substrate) the conditions of contact heat transfer are taking
place
oT oT.
T = Tsup, A(T)a = Asub(Tsub)a—SZUb-
If an oxide pellicle is on the substrate surface, then the first condition must
be replaced by

MT)0T 8z = 1/R(T — Tsuwp),
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where R = §/A,, is the heat resistance, d, A,, are the thickness and heat con-
ductivity coefficients on substrate surface respectively. However in a real
process of spraying the coatings are sprayed at once after cleaning the surface
of substrate, while the thickness of oxidized pellicles is insignificant. Then the
influence of pellicles on the contact temperature is not large and it is possible
to ignore them. As far as the molten particle drops on a cold substrate and

symmetry
line

/Fsl

mmd

substrate

Figure 2. Configuration of problem in arbitrary time moment.

solidifies afterwards, we consider the problem of heat diffusion in the system
”particle-substrate” as a problem about crystallization of substance (particle).
Let assume that there is no melting, otherwise the heat problem should be
defined as a problem of substrate melting introducing additionally equation
for front of substrate melting. It follows from the above that the border -
line separating molten part of particle from solidified one is not constant and
it is defined within the problem solution. On the inter-phase border I'y; the
Stefan condition is satisfied and the condition for temperature on this border
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Figure 3. Particle spread dynamics(Al203).

is given by

oT!
- A(T’)E = Lpp°vy,T° =T =T,

oT®
0z

A(T?)

The temperature on the phases partition border is not constant and it must
be defined within the process of problem solution Ts = T),(P). Empiric
Johnson formula estimates the change of temperature of melting ATy causing
the change of pressure ATy, = T,,APps/(41.3L,,), where L, is the melting
heat, ps is the solid phase density, AP is pressure, change in comparison with
the normal pressure; T}, is the melting temperature under normal pressure.

In order to complete the formulation of the heat problem the initial location
of front of crystallization I'y; and the initial distribution of temperature for
the particle and substrate are established. At the initial moment the particle
is completely melted, i.e. the front of crystallization is absent and I'y; is the
line z = 0. At the initial moment the temperature of particle is supposed to
be constant and may be larger than the temperature of material melting;:

Tlt—=o = To > Tpy-

On the lower border the isothermal condition or boundary condition of the
first type with constant initial temperature is established:

Tsub - Tsub,[)-

3. NUMERICAL ALGORITHM

We solve the problem (2.1) — (2.5) with initial and boundary conditions. The
particle velocity at the initial moment and initial radius are chosen as features.
The problem is solved by the difference method and we use a splitting of
modeling process into elementary physical processes at the iteration level. The
field of a particle spreading is covered by the chess mesh. Each cell (i, j) of the
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mesh is interpreted as an element of liquid volume, the pressure P, density
p, temperature T are defined at the center of the cell (4,5), and divergent
D = VYV is defined with values of components of velocity vector u,v at semi-
integer points (i £0.5,5) and (i,j £ 0.5), accordingly. The approximation by
one-sided differences was carried out in the equations of movement and energy
the sign of velocity on the borders of the cell was taken into account. This
allowed us to construct conservative schemes and to preserve the transportive
feature. The main difficulty is the fact that at any moment the domain of
splitting (free surface) is changing and it is defined with the help of volume
function. Guiding cosines of curvature to free surface under conditions of heat
exchange are calculated approximately as well.

The numerical algorithm is implemented as a complex of applied programs
in Fortran.

In fig.3 some results are given for modeling the powder spraying process
including spherical particle of oxide of aluminum Al,O3. We take the initial
velocity 100m/s, ter pressure 1AT M, the temperature 2400K and the steel
substrate of room temperature.

The state equation was defined according [4]:

K,  p. akK
P=—({(—)"=1)+ (pT — poTo)—,
() = 1)+ (T = poTy) &

where k is parameter, K = E/(3(1 — 2u)) is the volume module of resilience
for isotropic bodies, E is the Jung module, p is the Puasson coefficient.

The ideas used in this article give us an opportunity to estimate the inter-
action of particle - substrate in more realistic way and to form the domain of
contact at initial stage of impingement. However available data don’t allow
us to make a complete comparison. It is connected both with the difficulty
to define output data for a single particle and to define the values of many
thermophysic constant which are not universal and they demand additional
specifications connected with their dependence not only on the temperature
but also on the pressure. Besides the Fourier law describes the process of
heat transfer. The borders of applicability of Fourier law is defined by phys-
ical processes, in particular the processes should be slow, and the gradients
should be small. These demands are not always satisfied under impingement
in domains of high pressures.

The model allows us to calculate at arbitrary moments the fields of tem-
peratures, pressure, the line of solidification. It defines the shape of a free
surface (at the end of the process of it is the shape of the solidified surface),
and the degree of the melting substrate.
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DALELIU POVEIKIO IR KIETEJIMO PROCESO
MATEMATINIS MODELIAVIMAS

G. GROMYKO, G. ZAYATS, A. SHERBAF

Nagrinéjamas uzdavinys yra apie plazminio uzpurskimo dangos generavima. Sudarytas
pilnas matematinis modelis, kuriame ivertinami svarbiausi fiziniai procesai. Skaiciavimo
eksperimentai atlikti naudojant Navje-Stokso lygtis, uzraSytas cilindrinése koordinateése.
Siluminiai procesai dalelése ir pagrindo medziagoje aprasomi dvimaciu Silumos laidumo
uzdaviniu, kuriame atsizvelgiama i hidrodinamines ir slégio jégas. Daleliy kietéjimo pro-
cesas modeliuojamas vienmaciu Stefano tipo uzdaviniu. IStirta ivairiy parametry, tokiy
kaip daleliy judéjimo greitis, diametras, plazmos temperatira ir slégis, itaka. Uzdavinys
sprendziamas baigtiniy skirtumy metodu bei aprasytas sudaryty taikomuyjy programy pa-
ketas.



