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ABSTRACT

LAPACKO95 is a set of FORTRAN95 subroutines which interfaces FORTRAN95 with
LAPACK.

All LAPACK driver subroutines (including expert drivers) and some LAPACK
computationals have both generic LAPACKO95 interfaces and generic LAPACKT77
interfaces. The remaining computationals have only generic LAPACKYTY7 interfaces. In
both types of interfaces no distinction is made between single and double precision or
between real and complex data types.

1. INTRODUCTION

The high performance linear algebra package, LAPACK is adapted for the
new FORTRAN standard, FORTRAN 90/95. For convenience we use the
name LAPACK 77 to denote the existing FORTRAN 77 LAPACK package,
and LAPACK 95 to denote the new FORTRAN 95 interface which is describe
here.

We give the background information and references of LAPACK, Scal.A-
PACK, FORTRAN 95 and HPF in this section. The end of this section
contains very brief statements of LAPACK95 too.
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1.1. LAPACK

LAPACK is a library of FORTRAN 77 subroutines for solving the most com-
monly occurring problems in numerical linear algebra. It has been designed
to be efficient on a wide range of modern high-performance computers. The
name LAPACK is an acronym for Linear Algebra PACKage.

LAPACK provides routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations, eigenvalue prob-
lems, and singular value problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are re-
lated computations such as reordering of the Schur factorizations and esti-
mating condition numbers. Dense and banded matrices are handled, but not
general sparse matrices. In all areas, similar functionality is provided for real
and complex matrices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used
EISPACK and LINPACK libraries run efficiently on shared-memory vector
and parallel processors. On these machines, LINPACK and EISPACK are
inefficient because their memory access patterns disregard the multi-layered
memory hierarchies of the machines, thereby spending too much time moving
data instead of doing useful floating-point operations. LAPACK addresses this
problem by reorganizing the algorithms to use block matrix operations, such
as matrix multiplication, in the innermost loops. These block operations can
be optimized for each architecture to account for the memory hierarchy, and
so provide a transportable way to achieve high efficiency on diverse modern
machines. LAPACK requires that highly optimized block matrix operations
be already implemented on each machine.

LAPACK routines are written so that as much as possible of the compu-
tation is performed by calls to the Basic Linear Algebra Subprograms[14]
(BLAS). While LINPACK and EISPACK are based on the vector operation
kernels of the Level 1 BLAS. LAPACK is designed at the outset to exploit
the Level 3 BLAS — a set of specifications for FORTRAN subprograms that
do various types of matrix multiplication and the solution of triangular sys-
tems with multiple right-hand sides. Because of the coarse granularity of the
Level 3 BLAS operations, their use promotes high efficiency on many high-
performance computers, particularly if specially coded implementations are
provided by the manufacturer.

Highly efficient machine-specific implementations of the BLAS are available
for many modern high-performance computers. The BLAS enable LAPACK
routines to achieve high performance with transportable software. Although
a model FORTRAN implementation of the BLAS is available from netlib[5]
in the BLAS library. It is not expected to perform as well as a specially tuned
implementation on most high-performance computers. On some machines
it may give much worse performance. But it allows users to run LAPACK
software on machines that do not offer any other implementation of the BLAS.

For more information on LAPACK and references on BLAS, LINPACK and
EISPACK see [14; 1].
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1.2. ScaLAPACK

ScaLAPACK is a library of high-performance linear algebra routines for dis-
tributed memory message-passing MIMD (Multiple Instruction Multiple Data)
computers and networks of workstations supporting PVM][7] (Parallel Virtual
Machine) and/or MPI[12] (Message Passing Interface). ScaLAPACK is a con-
tinuation of the LAPACK project (see section 1.1). Both libraries (LAPACK
and ScaLAPACK) contain routines for solving systems of linear equations,
least squares problems, and eigenvalue problems. The goals of both projects
are efficiency (to run as fast as possible), scalability (as the problem size and
number of processors grow), reliability (including error bounds), portability
(across all important parallel machines), flexibility (so users can construct
new routines from well-designed parts), and ease of use (by making the in-
terface to LAPACK and ScaLAPACK look as similar as possible). Many of
these goals, particularly portability, are aided by developing and promoting
standards , especially for low-level communication and computation routines.
ScaLAPACK has been successful in attaining these goals, limiting most ma-
chine dependencies to two standard libraries called the BLAS (Basic Linear
Algebra Subprograms) and BLACS[15] (Basic Linear Algebra Communica-
tion Subprograms). LAPACK runs on any machine where the BLAS[14] are
available, and ScaLAPACK runs on any machine where both the BLAS and
the BLACS are available.

The library is currently written in FORTRAN 77 (with the exception of a
few symmetric eigenproblem auxiliary routines written in C to exploit IEEE
arithmetic) in a Single Program Multiple Data (SPMD) style using explicit
message passing for interprocessor communication. The name ScaLAPACK
is an acronym for Scalable Linear Algebra PACKage, or Scalable LAPACK

For more information on ScaLAPACK and references on BLAS, BLACS,
PBLAS, PVM and MPI see [14; 15; 6; 2; 7; 12].

1.3. FORTRAN 95

FORTRAN has always been the principal language used in the fields of scien-

tific, numerical, and engineering. A series of revisions to the standard defining

successive versions of the language has progressively enhanced its power and

kept it competitive with several generations of rivals. The present FORTRAN

standard is 90/95. A summary of the new features is:

e Array operations.

e Pointers.

e Improved facilities for numerical computations including a set of numerical
inquiry functions.

e Parameterization of the intrinsic types, to permit processors to support
short integers, very large character sets, more than two precisions for real
and complex, and packed logicals.

e User-defined derived data types composed of arbitrary data structures and
operations upon those structures.
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e Facilities for defining collections called “modules”, useful for global data
definitions and for procedure libraries. These support a safe method of
encapsulating derived data types.

e Requirements on a compiler to detect the use of constructs that do not
conform to syntax of the language or are obsolescent.

e A few source form, more appropriate to use at a terminal

e New control constructs such as the SELECT CASE construct and a new
form of the DO.

e The ability to write internal procedures and recursive procedures, and to
call procedures with optional and keyword arguments.

e Dynamic storage (automatic arrays, allocatable arrays, and pointers).

e Improvements to the input-output facilities, including handling partial
records and a standardized NAMELIST facility.

e Many new intrinsic procedures.

Taken together, the new features contained in FORTRAN 90/95 ensure that
the FORTRAN language will continue to be used successfully for a long time
to come. The fact that it contains the whole of FORTRAN 77 as a subset
means that conversion to FORTRAN 90/95 is as simple as conversion to
another FORTRAN 77 processor. For more information on FORTRAN 90/95
see [11].

1.4. High Performance FORTRAN (HPF)

FORTRAN is reaching its limitations on the latest generations of high per-
force computers. FORTRAN was originally developed for serial machines with
linear memory architectures. In the past several years it has become increa-
singly apparent that a language design relying on this architectural features
creates difficulties when executing on parallel machines. One symptom of this
is the proliferation of parallel FORTRAN dialects, each specialized to the ma-
chine where it was first implemented. As the number of competing parallel
machines on the market increases, the lack of a standard parallel FORTRAN is
becoming increasingly serious. HPF solves this problem. The overriding goal
of HPF was therefore to produce a dialect of FORTRAN that could be used on
variety of parallel machines. HPF is an extension of FORTRAN 90/95. The
array calculation and dynamic storage allocation features of FORTRAN 95,
and the FORALL statement, the PURE and EXTRINSIC attributes of
FORTRAN 95, make it natural base for HPF. The new HPF language futures
fall into four categories with respect to FORTRAN 90/95:

e New directives.

e New language syntax.
e Library routines.

e Language restrictions.

For more information on HPF see [9].
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1.5. LAPACK for FORTRAN 95

All LAPACK driver subroutines (including expert drivers) and some LA-
PACK computationals have both generic LAPACK95 interfaces and generic
LAPACKTYT interfaces. The remaining computationals have only generic LA-
PACKT7 interfaces. In both types of interfaces no distinction is made between
single and double precision or between real and complex data types. The use
of the LAPACK95 (LAPACKY7) interface requires the user to specify the
F95_LAPACK (F77_LAPACK) module.

For example, the GESV driver subroutine, which solves a general system of
linear equations, can be called in the following ways:

e CALL LA_GESV( A, B, IPIV=ipiv, INFO=info )
or
e CALL LA_GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )

The module F95_LAPACK is needed in the first case, the LAPACKO95 in-
terface package is called. The module F77_LAPACK is needed in the second
case, the LAPACKY77 package is directly called.

The present implementation of the LAPACK95 can be summarized in the
following titles:

e Driver Routines for Linear Equations.

e Expert Driver Routines for Linear Equations.

e Driver Routines for Linear Least Squares Problems.

e Driver Routines for generalized Linear Least Squares Problems.

e Driver Routines for Standard Eigenvalue and Singular Value Problems.

¢ Divide and Conquer Driver Routines for Standard Eigenvalue Problems.
e Expert Driver Routines for Standard Eigenvalue Problems.

e Driver Routines for Generalized Eigenvalue and Singular Value Problems.

e Some Computational Routines for Linear Equations and Eigenproblems.
The LAPACKO95 library is successively updated and it is available from

netlib (see [5; 4]).

1.6. ScaLAPACK for HPF

The HPF ScaLAPACK interface project started in several places (see [10;
13]), and at UNTeC. Several ScaLAPACK subroutines and test programs are
interfaced with HPF.

2. INTERFACE BLOCKS FOR LAPACK 77

All LAPACKTYT7 driver subroutines (including expert drivers) and LAPACKT77
computationals have generic interfaces. No distinction is made between single
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1 PROGRAM EXAMPLE

2 USE LA_PRECISION, ONLY: WP => SP

3 USE F77_LAPACK, ONLY: LA_GESV

4 IMPLICIT NONE

5 CHARACTER(LEN=*), PARAMETER :: FMT = ’(7(1X,F9.3))’
6 INTEGER :: J, INFO, N, NRHS, LDA, LDB

7 INTEGER, ALLOCATABLE :: IPIV(:)

8 REAL(WP), ALLOCATABLE :: A(:,:), B(:,:)

9 N = 5; NRHS = 2

10 ALLOCATE( A(N,N), B(N,NRHS), IPIV(N) )

11 CALL RANDOM_NUMBER(A)

12 DO J = 1, NRHS; B(:,J) = SUM( A, DIM=2)*J; ENDDO

13 LDA = N; LDB = N

14 CALL LA_GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )

15 WRITE(*,*) *INFO = ’, INFO

16 IF( NRHS < 6 .AND. N < 11 )THEN

17 WRITE(*,*) ’The solution:’

18 DO J = 1, NRHS; WRITE (*,FMT) B(:,J); ENDDO
19 ENDIF

20 END PROGRAM EXAMPLE

Figure 1. Examplel: Module F77_.LAPACK is used.

and double precision or between real and complex data types. The use of the
LAPACKT7 generic interface requires the user to specify the F77_LAPACK
module.

Example 1 in fig. 1 demonstrates the use of a LAPACKT77 generic interface.
The program solves a linear system of equations A X = B, where A is a square
matrix and B and X are rectangular matrices.

Remarks:

e Statement 2 includes SP interface block from the LA_LPRECISION mo-
dule. WP will internally be used as SP. The interface block SP defines
the precision, in this case single precision. The program works in double
precision if DP replaces SP.

e Statement 3 includes the LA_GESYV interface block from F77_LAPACK
module.

e Statement 8. REAL(WP) defines variables A and B, in this case allocat-
able arrays A and B in single precision. The program will work in complex
if COMPLEX replaces REAL.

e Statement 14. The generic interface name LA_GESV is replaced during
the compilation phase by the proper interface body (see [8]). In this case
SGESYV replaces LA_GESV.

For more information see references [3; 4; 8].
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3. INTERFACE BLOCKS FOR LAPACK 90

1 PROGRAM EXAMPLE
2 USE LA_PRECISION, ONLY: WP => SP

3 USE f90_LAPACK, ONLY: LA_GESV

4 IMPLICIT NONE

5 CHARACTER(LEN=*), PARAMETER :: FMT = ’(7(1X,F9.3))"
6 INTEGER :: J, N, NRHS

7 REAL(WP), ALLOCATABLE :: A(:,:), B(:,:)

8 N = 5; NRHS = 2

9 ALLOCATE( A(N,N), B(N,NRHS) )

10 CALL RANDOM_NUMBER(A)

11 DO J = 1, NRHS; B(:,J) = SUM( A, DIM=2)*J; ENDDO

12 CALL LA_GESV( A, B )

13 IF( NRHS < 6 .AND. N < 11 )THEN

14 WRITE(*,*) ’The solution:’
15 DO J = 1, NRHS; WRITE (*,FMT) B(:,J); ENDDO
16 ENDIF

17 END PROGRAM EXAMPLE

Figure 2. Example2: Module F90_.LAPACK is used.

All LAPACKO90 driver subroutines (including expert drivers) and some LA-
PACK90 computationals have generic interfaces. No distinction is made be-
tween single and double precision or between real and complex data types.
The use of the LAPACK90 generic interface requires the user to specify the
F90_LAPACK module.

Example 2 in fig. 2 demonstrates the use of a LAPACK90 generic interface.
The program solves a linear system of equations A X = B, where A is a square
matrix and B and X are rectangular matrices. The computation in example
2 is the same as that in example 1. However the program is shorter and the
call of LA_GESV is simpler.

Remarks:

e Statement 2 includes SP interface block from the LA_PRECISION mo-
dule. WP is internally used as SP. The interface block SP defines the pre-
cision, in this case single precision. The program works in double precision
if DP replaces SP.

e Statement 3 includes the LA_GESV interface block from F90_.LAPACK
module.

e Statement 7. REAL(WP) defines variables A and B, in this case allocat-
able arrays A and B in single precision. The program works in complex if
COMPLEX replaces REAL.

e Statement 12. The generic interface name LA_GESV is replaced dur-
ing the compilation phase by the proper interface body. In this case
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1 PROGRAM EXAMPLE

2 USE LA_PRECISION, ONLY: WP => SP

3 USE £77_LAPACK, ONLY: F77GESV => LA_GESV

4 USE f90_LAPACK, ONLY: FOOGESV => LA_GESV

5 IMPLICIT NONE

6 INTEGER :: INFO, J, LDA, LDB, N, NRHS

7 INTEGER, ALLOCATABLE :: IPIV(:)

8  REAL :: TO, T1, T2

9 REAL(WP), ALLOCATABLE :: A(:,:), B(:,:)

10 N = 500; NRHS = 2

11 ALLOCATE( A(N,N), B(N,NRHS), IPIV(N) )

12 CALL RANDOM_NUMBER(A)

13 DO J = 1, NRHS; B(:,J) = SUM( A, DIM=2)*J; ENDDO
14 LDA = N; LDB = N

15 CALL CPU_TIME(TO); CALL CPU_TIME(T1); TO = T1-TO
16 CALL F77GESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
17 CALL CPU_TIME(T2)

18 WRITE(*,*) ’INFO and CPUTIME of F77GESV ’, INFO, T2-T1-TO
19 CALL CPU_TIME(T1); CALL F9OGESV( A, B ); CALL CPU_TIME(T2)
20 WRITE(*,*) ’CPUTIME of F90GESV ’, T2-T1-TO

21 END PROGRAM EXAMPLE

Figure 3. Example3: Both modules F77_LAPACK and F90_LAPACK are used.

SGESV_F90 replaces LA_GESV because of SP and REAL and because
the shape of array B is (:,:). LA_GESV is replaced by SGESV1_F90 if the
array B has shape (:).

Example 3 in fig. 3 demonstrates the use of both LAPACK77 and LA-
PACKO90 generic interfaces. The program also solves a linear system of equa-
tions AX = B, where A is a square matrix, and B and X are rectangular
matrices.

For more information see references [3; 8; 4].

4. CODE OF LAPACK90 ROUTINES

The code of LAPACKDY95 interface routine can be divided in the following
parts:

e Heading of the routine
— Subroutine or function statement
— USE statements

* LA_PRECISION module
* LA_AUXMOD (auxiliary) module if needed
* F77T_LAPACK module
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— IMPLICIT NONE statement
— Argument specifications
e Argument descriptions (comments)
e Local variable declaration
e Executable statements
— Local variables initialization
— Testing the arguments
— Work space allocation if needed
— Writing warning message if needed
— Calling the LAPACKT7 routine
— Work space deallocation if needed
— Calling the error trapping routine
e end of routine statement

The LA_PRECISION module and the ERINFO subroutine and other LA-
PACK95 programs are illustrated in [8].

5. LAPACK95 USER CALLABLE ROUTINES

[8] contains a short description of all LAPACK95 routines. The call of the
routine and a brief statement of its purpose are given. For example, for
LA_GESV:

e CALL LA_GESV( A, B, IPIV=ipiv, INFO=info )
Solves a general system of linear equations AX = B.

Arguments A and B must always be specified while IPIV and INFO are
optional. For more routine descriptions see [8].
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LAPACK95 — DIDELIO NASUMO TIESINES ALGEBROS
ALGORITMU PAKETAS

J. DANGARRA, J. WASNIEWSKI
Siame darbe apragytas LAPACK 95 paketas, kurj sudaro FORTRAN95 paprogramiuy rinki-

nys. Jos skirtos realizuoti FORTRAN 95 interfeisa su standartine LAPACK biblioteka. Pa-
teikiama butiniausia informacija apie LAPACK, ScaLAPACK, FORTRAN 95 ir HPF bib-
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liotekas. Po to trumpai suformuluojami bendri interfeiso sudarymo principai. LAPACK 95
néra nauja tiesinés algebros algoritmuy biblioteka, o tik konverteris, leidziantis ir FORTRAN
95 programose naudoti LAPACK algoritmus. Parodyta, kaip galima iSnaudoti platesnes
FORTRAN 95 galimybes lyginant su standartiniu FORTRAN 77. Pateikti interfeisy pa-

vyzdziai.



