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ABSTRACT

This paper continues the previous investigations [1]-[3] for process of intensive oil burnout
in glass fabric.

1. INTRODUCTION

Several years ago the mathematical simulation group of Institute of Mathe-
matics of Latvian Academy of Sciences and University of Latvia, in cooper-
ation with the Valmiera Glass Plant, made a start to the modelling of the
process of burning oil out from the glass fabric.

The glass fabric is produced from extremely small fibers forming ’threads’
from which the fabric is to be woven. During the initial stages of the techno-
logical process - manufacturing the threads and weaving the fabric - the glass
is covered with an oil film. Once the weaving is complete, the oil must be
burned away, so that the fabric can serve for insulation, fire-protective and
other purposes. The burnout is performed in a special furnace through which
the fabric is pulled. At the top and bottom of the furnace, in parallel with the
fabric sheet plane there are placed steel plates heated by diesel/residual-oil
fuel or gas. Therefore the fabric after it has entered the furnace is heated
extremely fast; the oil ignites and burns out from the fabric, which results in
whitening the latter. The whole process in the furnace last a few seconds (typ-
ically, 3-4 s). In turn, having left the furnace, the fabric cools down rapidly,
which may result in impermissible degradation of its mechanical strength.
Our challenge is therefore to define, by means of mathematical modelling,
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the influence of different factors (such as the pull-through speed of the fabric,
the properties of the metallic plates, the fabric thickness, etc.) on the fabric.
In the above mentioned works [1]-[3] it was estimated that, to describe ade-
quately the technological process by means of a mathematical model based on
Stefan-Boltzmann’s law of the radiant heat transfer, we should take into ac-
count the reflected radiation between the fabric surface and the heaters. This
means that any point on the fabric surface receives heat from all the points
on the heater plate (as well as reflects it to these points). In other words, the
boundary conditions of Stefan-Boltzmann’s type should be written in the inte-
gral form. It might be noted that in the mentioned publications a process was
modelled in which the heater placed above the fabric had a lower temperature;
this means that the effect of reflected radiation between the top of the fabric
and the top heater could be discounted, with the classic Stefan-Boltzmann
boundary condition employed instead.

As concerns thicker fabrics, to burn away all the oil it was necessary to rise
the temperature of the top heater. In this case, the effect of reflected radiation
between the fabric and both heaters should be accounted for.

In this work a mathematical model is given that describes this more inten-
sive technological process.

2. DESCRIPTION OF THE TECHNOLOGICAL PROCESS AND
ITS MATHEMATICAL MODEL

The sizes of the active zone situated in the furnace in which the fabric is
heated are as follows: length L, width Dy and height (the distance between
heating plates) H. The fabric of width D and thickness ¢ is pulled through
the furnace with velocity v. Since in a real technological process the length of
the fabric (L ~ D) and each of the heaters possesses its own (though constant
along the length and width of the furnace) temperature, we may assume (at
least in the first stage of the modelling) that the temperature changes only
along the fabric movement and perpendicularly to the fabric plane, we may
present the differential equation for the temperature field T'(z,y,t) in the
fabrics (see [1])

or T o, or. 08,07 -
/)Cp(g +U$) = %( a) + 8_y(k8_y) + Ry, (2.1)

O<z<L,0<y<d, t>0,

where p, ¢, and k are respectively the density, specific heat and thermal con-
ductivity of the glass fabric, but z-axis is oriented along the fabric’s movement
and y-axis is perpendicular to the fabric. In turn, the term R; refers to the
process of oil burnout (this term will be specified further).

The fabric thickness ¢ is relatively small as compared with other geometrical
parameters; we therefore will define the temperature averaged over the fabric
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thickness

T(x,t) =
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Integrating equation (2.1), we obtain
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0O<z<L,t>0.

We shall now describe the heat transfer proceeding between the fabric surface
and the surroundings. Here we will consider two mechanisms:

1) radiative heat exchange with the heaters according to Stefan-Bortzmann’s
law;

2) convective heat exchange with the gas whose temperature in the furnace is
T,.

In the literature, various techniques are proposed for defining the heat trans-
fer coefficient a(T"). We used, after having performed a series of numerical
experiments, a relatively simple expression from [4], because it became evident
that the main role here was played by the radiative heat transfer:

k T
a(T) = Nu=, Nu=0.044Re* T Re = —*
9 g

where kg, v, and U, are relatively the thermal conductivity, kinematic viscos-
ity and velocity of the furnace gas. We assume that the gas velocity coincides
with the speed of fabric movement: U, = v. Then the boundary condition at
the top surface of fabric y = §, will be:

kg—:; =eso[Th, — T + a(T)(T, - T), (2.4)

and at the bottom one, y = 0, correspondingly:

—kg—z =csoTi, — TY + a(T)(T, — T). (2.5)

Here ¢/ is the fabric emissivity, o is the Stefan-Boltzmann constant, T (Ths)
is the temperature of the top (bottom) heater. After the very first numerical
experiments it became evident ([1], [3]) (even in the absence of the burnout
process impact, that is, when R; = 0 in equation (2.3)) that the reciprocal
reflection of the heat flow between the fabric and the bottom heating plate
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(which is nearer to the fabric than the top plate and possesses a higher tem-
perature) must be taken into account. Then the boundary condition (2.5) on
the fabric bottom surface transforms into the following set of equations (see
[1] - [3], with the general theory given in [5], chap.8):

—kg—z = - ffsf Ly — o] + a(F)(T, - T), (2.6)
xJyp(z,t) = 8f0'j14(£6,0,t) +(1—¢y)
L
!Jh(g,t)2[(€_$)2 +a2]3/2d£7 (27)
L 2
T t) = enoTiy + (1 =) [ T3 (6) et (29

0

where ¢}, is the emissivity of the bottom heater, a = a; is the distance between
the bottom edge of the fabric and the bottom heater.

We are coming now to the description of the burnout process. Assuming
that the oil burns via a simple one-step Arrhenius reaction, we obtain:

E,
Ry =c(xz,t)AHA e:np(—RT),

where AH is the heat of reaction of the oil combustion, A - pre-exponential
Arrhenius constant, E, - activation energy of oil, R -gas constant.

In turn, c(z,y) is the non-burnt oil concentration varying as described by
the differential equation

dc Oc E,
g +U£ = —cAea:p(—ﬁ).

For a real technological process in non-stop production the dependence on
time ¢t is lost. Further, taking into consideration that the fabric thickness § is
small, we assume that the temperature variations along the fabric thickness

can be discounted. Then from relationship (2.2) we derive for a non-stationary
process

T(a:,O,t) = T(a:,é, t) =T (z,t),

and for a stationary process
T(z,0) = T(z,0) = T(z).

At last, estimation of various factors of the process shows (see [1]) that the
heat conduction in the z-direction is of little importance as compared with
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other factors. This allows us to present the following mathematical model:

—oT*
cppv% = e%f [U(T,‘ft -T + %]

+2a§T) (T, —T)+cAHA ewp(—R;), (2.9)
v% = —cAeXp(—g%), (2.10)

L
2d,
Ji(z) = e;0T (x) + (1 — &) / Jn(€) Me= ;32 i I (2.11)
0
A r a’d¢
Jn(x) = enoThy + (1 —ep) / Jf(f)Q[(§ o P (2.12)
0

T(0)=T° c(0)=-c". (2.13)

Here T°(c%) is the temperature of fabric at the furnace entrance (the initial
concentration of oil in the fabric).

3. A MATHEMATICAL MODEL FOR THE INTENSIVE OIL
BURNOUT

Glas fabric are used for various purposes, as decorative clothes, electric or
thermal insulation material (the latter may be used, for example, for fire-
protective clothes). Accordingly, the thicknesses of such fabrics may be differ-
ent. For a thicker fabric it is necessary, with the aim of attaining the complete
oil burnout, to rise the temperature also on the top heating plate. For this
case, one should take into account the heat reflection between the top surface
of fabric and the top heater. For this, the set of equations (2.9)-(2.13) is to be
substituted for a more generalized one. For a general non-stationary process
this will read as follows:

oT or, ey 4
e o TV a) = W(th + Jpp — 20T7)
+2a§T) (Ty —T)+ cAHAexp(— E%), (3.1)
oc Oc E,
TR —cA emp(—RT), (3:2)
2
Jre(a,t) = epoT* + (1 —cp) [ Jnl€ a; & (3.3)

— ) + alPr’

ai dé
— 2 + aPr’

Jhe(x,t) = EhUTht (1—ep) th (3.4)

[
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L
Jep(x,t) = epoT* + (1 —e5) /Jhb a;di P (3.5)
0
r a’d¢
Tus(@,8) = enaTh + (1 — 2 / (€ e (0)
0
T T T(t), ¢ =), (3.7)
T‘tzo = TO(z), c‘t:o = (). (3.8)

Here a; = H — § — a, with index #(b) relating to the top (bottom) part of the
fabric and top (bottom) heater plate.

Normally, the oil concentration distribution in the fabric at the initial time
moment ¢)(z) coincides with the oil concentration at the furnace entrance
®(t) and is constant, i.e. °(t) = c§(z) = °.

As follows from comparison of boundary conditions (2.5) and (2.6) — (2.8),
both the models — taking and not taking the heat flow reflection into account
— may be described by a single basic equation (3.1) if the flow J; in the
non-reflection model is defined as follows:

Jp=(1—ep)oTy +epoT. (3.9)

4. THE SOLUTION OF THE MATHEMATICAL MODEL

For a real industrial process constant conditions are needed. This means that
we have to describe a stationary process: %:f =0, gi = 0. It should be
noted that in the case of a non-stationary process the algorithm is essentially
the same. Further we will consider a generalized process of intensive treat-
ment (3.1) — (3.8). The calculations performed earlier ([1]-[3])show that at
some local points (within the burning zone) the temperature varies very fast.
Therefore for our numerical computations a piecewise-uniform grid (with a
smaller step in the burning zone) was used. We have exploited an iterative
algorithm, considering a process with boundary conditions (2.4), (2.5) as a
first approximation; this means that at the first step we find the temperature
distribution for the process with no reflection. Secondly, in each subinterval
[y, Tnt1] We consider fluxes (3.3) — (3.6) and similarly to publication [1] we
can derive (for example, from (3.3)) the following:

N—1
Tpp(zn) = ejoT(zn) + (1 —ey) Z Tne ;) +Jht(¢]+1) X
7j=0

Tjr1 — Tp _ Tj —Tp
Vg —z)2+al  f(zj—zn)?+a}
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Table 1.

z Ty Ty Ty Ty
0.16 0.67 0.58 0.78 0.65
0.19 0.72 0.66 0.86 0.77
0.21 0.76 0.73 1.21 1.32
0.24 0.81 0.79 1.13 1.12
0.26 0.87 0.84 1.10 1.09
0.27 0.92 0.89 1.08 1.07
0.28 1.20 1.27 1.07 1.06
0.29 1.16 1.18 1.05 1.05
0.30 1.13 1.13 1.03 1.04

Expression of the same kind might be written for the other fluxes (3.4) —
(3.6). All the fluxes Jy¢(xy), Jps(2n), n = 0,1,..., N, we can approximate
with the classical cubic splines (with the continuous second derivative at the
grid points z,) and substitute these expressions into equation (3.1). The set
of ordinary differential equations (3.1), (3.2) is computed based on the Maple
package using the dsolve program (with the Isode — implicit Adams method).
If for flux Jy; (or for Jy and Jgp) formula (3.9) is employed, it is obvious that
this computation stage becomes simpler.

Comparative computations have been performed for the following variants
of the stationary process: reflected radiation is not taken in to account, that
is, flux J is computed by formula (3.9); the top heater is cooler, so the model
(2.9) — (2.13) can be exploited; there is an intensive burnout, therefore we use
the ”full” system (3.1) — (3.8).

For numerical calculation we use following date: L = 1.166m, § = 0.2mm,
a = 0.15m, a; = 0.20m, ¢y = 0.92, ¢, = 0.8, p = 1100kg/m?, cp =
690.82J /kg/K, 0 = 5.6703x1078W /m? /K", E, = 160kJ/mol,v = 0.33m/sek,
AH =1.207 x 10"J/mol, A = 1.0 x 10?/sek, R = 8.31441J /K /mol.

Temperature distribution in the fabric is represented in the following ta-
ble 1, where
Ty (x) = T(x)/Thp with Thy=1123 K, Th;=973 K and without the reflection;

T (z) = T(x)/Thp with Tpp=1123 K, T1,;=973 K and with the reflection;
15 (z) = T(x)/Thy with Thp = Tp=1123 K and without the reflection;
Ty(z) = T(x)/Thy with Thy = Tp;=1123 K and with the reflection.

One can see that in the case of intensive burnout the maximum temperature
in the burning zone increases and the burning process itself starts essentially
nearer to the entrance of the furnace.
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ALIEJAUS ISDEGINIMO IS STIKLO GAMINIU
MATEMATINIS MODELIS

A. BUIKIS, H. KALIS, R. MILLERE

Darbe toliau sistemingai nagrinéjami stiklo gaminimo procesy matematiniai modeliai. Ti-
riama jvairiy faktoriy (stiklo masés judéjimo greicio, metalo ploksteliy savybiy, gaminio
storio) jtaka stiklo gaminio kokybei. Kadangi aliejaus iSdeginimas vyksta labai aukstoje
temperatiroje ir labai trumpai, tai matematiniai modeliai leidzia detaliai itirti procesa
bei parinkti optimalias parametry reiksmes. Matematini modelj sudaro nestacionari lygtis,
aprasanti difuzijos, konvekcijos ir cheminés reakcijos procesus. Vidurkinimo metodu uzda-
vinys suvedamas | vienmati modeli. Cheminés reakcijos greitis modeliuojamas panaudojant

Aremijaus modeli. Pateikiami skai¢iavimo eksperimento rezultatai.



