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ABSTRACT

This article is devoted to further investigation of numerical methods for one differential
problem of mixed type. We consider a two-dimensional first-order differential equation
with one complex-valued and one real constant coefficients. So, we have an elliptic problem
with respect to the first argument and a hyperbolic problem with respect to the second one.
The equations of such type are generalized transfer equations. Firstly, the correctness of the
problem stated is discussed. Secondly, possible difference scheme of the multicomponent
modification of the alternating direction method is proposed. Its stability and convergence
is investigated. Results of numerical experiments on modelling of nonlinear regime of surface
volume free electron laser are analyzed.

1. INTRODUCTION

The problem considered here arose in modelling of surface scheme of volume
free electron laser (VFEL). Surface scheme can be realized for visible range
of wavelength [2] and millimeter and sub-millimeter range [3]. In such a
scheme a relativistic electron beam passes close to the surface of a target and
the Cherenkov mechanism of radiation is realized. Cherenkov instability in
VFEL is described by the system of nonlinear equations of a special type.
Let us consider the history of deriving this system. From two first Maxwell’s
equations in the approximation of slowly changing amplitudes in two-wave
approximation we can derive the system of some equations having the form:
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where FE is the amplitude of electric field strength, j is the beam current
density.

These equations are connected by boundary conditions with respect to z.
They are first-order PDEs too and can be obtained from the condition of
continuity of tangential parts of electric and magnetic fields. In the case of
two amplitudes E; and E5 they have a form:
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(1.2)
where ¢ = 1,2 and k£ = 2,1 for two boundaries with respect to z. E,(EO) is the
amplitude of external incident to considered boundary wave.

Here we do not consider equations for distribution functions of electron
beam and right-hand sides in (1.1) — (1.2). It is necessary to emphasize that
the full system describing quasi-Cherenkov FEL is more complicated than
(1.1) — (1.2). One can find more information about it in [4] and [7].

Equation (1.1) is the first-order partial differential equation with complex
amplitude E and real or complex coefficients before derivatives relative to z
and z. If A and B are real, we have pure hyperbolic equation. Such case was
studied in [7], [8], [9]- If for example A is complex, we deal with so called
surface wave. This case was considered in [10], [11]. So, taking into account
the structure of (2.4) it is the most correctly to call this equation with one
complex coefficient as generalized transfer equation.

2. PROBLEM FORMULATION

We consider the following model problem:

ou 6u 8u
i - = 2.1
(Oxt)—ul, t>0,

u(z,x,0) =ug, 0<2z<L.

The coefficient a is complex-valued. Coeflicient b is a real number. Let us
consider for the simplicity that Re(a) > 0, Im(a) > 0, b > 0. We suppose
the conditions of matching of functions ug, u; and f at z = 0 and ¢t = 0 be
fulfilled.

Considering the correctness of the problem (2.1), it is well-known [5] that
the initial value problem for the Cauchy-Riemann system is ill-posed. So,
in our case one should expect that the problem is ill-posed too. But we
suppose the differential problem (2.1) has a unique bounded solution. And
special conditions for ug, u; and f are fulfilled (e.g., uo(0,z) = wu1(z,0),
f(z,z,0) = 0). In this case we can try to use numerical methods for our
problem.
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Analysis of possible difference schemes for the test equation (2.1) with b =0
and f = 0 was carried out in [10], [11]. It turned out that the good meth-
ods were the implicit scheme of the first-order approximation and weighted
scheme. Stability for these schemes was investigated in these works. The
validity of the condition for the implicit scheme was proved by numerical
computations.

So, let us profit by these results for elliptic parts of our problem and pre-
vious results for hyperbolic problem. We propose difference schemes of the
multicomponent modification of the alternating direction method (MMADM).
This method was proposed in [1] and it is effective when operating with com-
plex arithmetic. We applied MMADM for hyperbolic problems in [7], [8], [9].
Here for the simplicity we use notation from [6].

The scheme of MMADM for equation (2.1) can be written as

yi +ajs +by2 = f,
y; + ajs + bjs = f.

Here y!' and y? are two components of approximate solution (2.1).

In this section, we discuss stability and convergence of numerical method
(2.2) — (2.3).

Let us introduce the following notation:

! n

y'=Re(y), y"=Im(y), 7=y -iy"
Let define inner products:

N-1
(Y,v)0 = Z hyv;, w={x;=1h, i=0,1,..,N, Nh= L},
i=1
N;—1 Ns—1

(yaU)sz = (y,U) = Z Z hzhwyijvija Gzav = Wz Uwyg;
i=1 j=1

and the norm:
lyll = (,9), |yl =1Iv'I” + ly" 1%

Using the energy inequalities method we proved in [6], that the difference
scheme (2.2)—(2.3) is stable relative to initial data and right-hand side. For
its solution the following estimates hold:

157 < M (|y(O) + lay' (0) +by*(0) — FO)P +max((FP + %)), (24)

where M is a bounded positive constant independent of grid spacings, i = 1, 2.
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Such proof for hyperbolic equations was described in detail in [9] and espe-
cially in [12]. Let us repeat some computations. Multiplying (2.2) by Ta(y}),
(2.3) by 7b(y?) and summing up, we obtain after some transformations:

®(y) +0.5]la'(32)' — a"(§D)" +b(@2)' - I
= 0.5]la'(y2)" — a"(y2)" +b(yD)' - f'II”
+0.5]la"(92) +d' @1)" +b(52)" — f"II

— lla" () + /()" +b2)" — £

+0.57 ! (ul)|I? + 0572l ()" I + 0572 la” (y%) |
+0.57 0" (yh)" 17 + 0572 by

7 (f (@ W)~ a" ()" + b))

(@ @h)" - a"h) + b)) =0, (2:5)
where

B(y) =7 (1) a'(wz)") + 7 ()", a" (w3)") + 7 (W), b(v3,)")
+7 ()" bW3)") =7 (9),a" (yz)") + 7 ()", 0" (yz,)") (2.6)
Using Lemma 3.1 [12] it is easily to obtain that the first, second, third and

fourth first components in (2.6) are greater than or equal to zero. For last
two components taking into account boundary conditions, we can obtain

Ta"
T(y) = ()" Wh)")+7 ()", wh)') = T (Wh-10) = Wl —10)?) -

In [11] we suggested the following condition of computing stability for the
implicit scheme: 7|a|?/h, > 2a". With its help one can show that

T(y) +0.57%[la" (yz,)'l|* > 0.

So, finally instead of (2.5) we have:
0.5lagh+bj2— fI? < (1+Cim)layt+by2 - fP+Co (If + £ +7IA2) - (27)

Then the proof of validity of the estimation (2.7) repeats the proof given in
[9], [12]. The estimate (2.4) for ¢ = 1 is obtained in the same way as [9], [12].

We denote the discretization error as 2* = y® —u, 4 = 1, 2, where u is the
exact solution of initial differential problem.

Let us suppose the differential problem (2.1) has a unique bounded solu-
tion. Then the solution of the difference problem (2.2)—(2.3) converges to the
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solution of initial differential problem as 7, h,, h, — 0. The discretization
error may be written as

|2| < O(T + h + hy).

Obtained theoretical results were used successfully in modelling of surface
VFEL. We considered six equations of the form (1.1) with amplitudes E;, i =

1,...,6, four boundary conditions of the form (1.2) and two simple boundary
conditions. Boundary conditions are written on three boundaries at z = 0,
z =L, z=—1 (1is the thickness of relativistic electron beam). Making use

of results of previous section, we have proposed difference schemes of type
(2.2)—(2.3) (see [4]).
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Figure 2. Attempt of optimiza-

Figure 1. Amplification of elec- tion of the amplification process
tromagnetic fields as a function in visible surface quasi-Cherenkov

of time in visible surface quasi- FEL
Cherenkov FEL

3. NUMERICAL EXPERIMENTS

Now we discuss results of visible surface quasi-Cherenkov VFEL simulation.
In Fig.1 the amplification of electromagnetic fields as a function of time is
represented. Lines 1 and 2 are related to the radiated wave amplitude on the
grating (target) at z = 0 and z = L; 3 and 4 correspond to the diffracted
wave at z = L and z = 0, respectively. From Fig.1 the achievement of
saturation in radiation amplitude can be easily seen. The regime of saturation
is very important in the nonlinear theory of VFEL. This figure shows that all
solutions are bounded and stable.

Fig.2 demonstrates the attempt of optimization of the amplification process
of the electromagnetic wave relative to the two parameters, the synchronism
condition € and the Bragg condition s fulfillment. It is obvious that there is
the optimal correlation between these two parameters where the amplification
process is developed the most effective. Using this surface one can choose more
working geometry for real physical experiment. All numerical results are in
good agreement with analytical estimations form the physical point of view.
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In conclusion, difference scheme proposed in this article can be used for
numerical solution of generalized transfer equation. It is stable and its solution
converges to the solution of initial PDE. This difference scheme can be used
in planning of real physical experiments on VFEL.

This work is in progress under State Program of fundamental investigation
"Algorithm" and supported by INTAS (project INTAS-97 Ref. N0:32041).
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Vieno miSraus tipo uZdavinio skaitinis sprendimas
S. Sytova

Straipsnyje tiriami miSraus tipo uZdaviniy sprendimo algoritmai. Nagrinéjama dvimate
pirmosios eilés diferencialiné lygtis, kurios vienas koeficiantas yra kompleksiné funkcija, o
kitas — realaus tipo skaiCius. Taigi uzdavinys yra elipsinio tipo vieno kintamojo atZvilgiu ir
hiperbolinio tipo kito kintamojo atzvilgiu. IStirtas baigtiniy skirtumy schemy stabilumas ir
konvergavimas. Schemos realizavimui naudojamas dagiakomponentinis iteracinis metodas,
iStirtas jo stabilumas. Pateikti matematinio modeliavimo rezultatai.



