MATHEMATICAL MODELLING AND ANALYSIS
VoLuME 6 NuUMBER 2, 2001, pAGES 310-320
© 2001 Technika

STABILITY OF PIECEWISE POLYNOMIAL
COLLOCATION FOR VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS !

P. OJA, M. TARANG

Department of Applied Mathematics, University of Tartu
Liivi 2, Tartu 50409, Estonia

E-mail: peeter.oja@ut.ee, mare.tarang@ut.ee

Received September 27, 2001; revised October 30, 2001

ABSTRACT

Numerical stability of the spline collocation method by piecewise polynomials for Volterra
integro-differential equations is investigated. Stability conditions depending on collocation
parameters and also on parameters of certain test equation are obtained. Results of several
numerical tests are presented supporting theoretical results.

1. INTRODUCTION

Discretization methods in practical solving of differential and integral equa-
tions are applicable only if they are stable. The first results about stability
of the collocation method by polynomial splines for Volterra integral equa-
tions are given in [4] and the most adequate ones seem to be in [5], see also
references therein. Special case of smooth splines is treated in [6]. Such prob-
lem for Volterra integro-differential equations is considered in [3], but there
is no case of piecewise polynomials, i.e. splines with possible discontinuities
in knots. In this paper we will analyze the numerical stability of the piece-
wise polynomial spline collocation method in the case in which the mesh is
uniform. Stability means here the boundedness of approximate solutions in
uniform norm when the number of knots increases. It turns out that, while for
Volterra integral equations the stability depends only on the collocation pa-
rameters, for Volterra integro-differential equations there is also dependence
on the parameters of certain test equation. We present also the results of
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several numerical tests where the method is applied to a widely used test
equation. They support completely the theoretical results.

2. THE SPLINE COLLOCATION METHOD

Consider the Volterra integro-differential equation

t
y'(t) = f(ty(®) + / K(t,5,y(s)ds, t€[0,T], (2.1)
0

with the initial condition y(0) = yo. The functions f:[0,7] x R - R and
K:S xR — R (where S = {(¢,5): 0 < s < t < T}) with number yo are
supposed to be given.

Amesh0 =1ty <t; <...<ty =T will be used, with the choice of knots ¢,
being dependent on N, since we want investigate the process N — oo. Denote
hn = tn _tn—l and Op = (tn—l,tn], n= ].,.. . ,N, AN = {tl,. .- ;tN—l}-

For given integers m > 1 and d > —1 define the space of splines

St (An) = {u € CY0,T]: uly, € Pmya, n=1,...,N},

where Py, denotes the set of all polynomials with degree not exceeding k.

If d = —1, then the elements of S,!(Ay) may have jump discontinuities
at the knots Ay. An element u € S% (Ay) as a polynomial spline of degree
not greater than m +d can for all t € o,,, n =1,... , N, be represented in the
form

m+d
Un(t) = Y bkt — tn_1)¥. (2.2)
k=0

In order to determine the coefficients b, we suppose that there exists a fixed
selection of collocation parameters 0 < ¢; < ... < ¢, < 1. Then we define
collocation points t,; = tp—1 + cjhn, j=1,... ,m,n=1,... ,N, forming a
set X(N). In order to determine the approximate solution u € S¢ (An) of
the equation (2.1) we impose the following collocation conditions

t
u'(t) = f(t,ut)) + /K(t,s,U(S))d& t € X(N). (2.3)
0

Starting the calculations by this method we assume also that we can use
the initial values ugj) 0) = y9(0), j = 0,...,d, which is justified by the
requirement u € C?4[0,T]. Thus, on every interval o,, we have d+ 1 conditions
of smoothness and m collocation conditions to determine m+d-+1 parameters
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bnk. This allows us to implement the method step-by-step going from an
interval o, to the next one. However, in the case d = —1, to be able to
use the initial condition on o1 = [0,%;], one collocation condition should be
dropped.

3. THE METHOD IN THE CASE OF A TEST EQUATION

Consider the test equation

t

v =ay®)+ A [y@ds+ o), teo.T] (3.1)
0
where, in general, A and « may be any complex numbers. Equation (3.1)
is considered as the basic test equation (see [1], [2]) in the investigation of
stability properties of several methods. Assume that the mesh sequence {An}
is uniform, i.e., h, = h = T/N for all n. Representing ¢t € o, ast =t,_1+7h,
7 € (0,1], we have on o,
m+d
Un(tn_1 +Th) = Z AniT", T € (0,1],
k=0

where we passed to the parameters a,, = b,rh*. Using the smoothness
conditions (for any u € S (Ay))

ud (tn —0) =ul?) (¢, +0), j=0,...,d, n=1,...,N -1,
and collocation conditions (2.3) applied to the test equation (3.1)

tnj
W (tng) = @tn(tn) + X [ u(o)ds + Fltng), 5 = 1.,
0
n=1,...,N, (3.2)

we get the equation in matrix form
(V —ahVi — Ab2Va)anyr = (Vo — ahVy — AR2(Va — Vs))ay, + hgn,  (3.3)

with (m +d+ 1) x (m + d + 1) matrices V, Vg, Vi, Va2, V3 as follows:

() e

C C
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I being the (d + 1) x (d + 1) identity matrix,

A being a (d+1) x (d+ 1) triangular matrix with one’s on the main diagonal
and zeros below,

0
1 ¢ ¢ cmtd
‘/1 = )
1 cm &2 cmtd
0
e )2 T (m 4 d +1)
Vo = )
Cm C5)2 ... BT /(m 4+ d+1)

V3 having first d + 1 rows 0 and last m rows as (1,1/2,...,1/(m + d + 1)),
and, finally, the m + d + 1 dimensional vector g, = (0,...,0, f(tnt1,1) —
f(tn1),--- s f(tny1,m) — f(tam)). Thus g, = O(h) for f € c.
In this paper we will focus our main attention on the case d = —1, i.e. on
piecewise polynomials. Thus, let d = —1 in the sequel. Suppose also a # 0.
Let us introduce the polynomials Py(\,a) and Qg(\,a) by the following
recurrence relations

Qr = Pr—1 + aQp—1, (3.4)

P = AQp_1 (3.5)

starting with Py = 0 and Q9 = 1. Then we have, for example, P, = A,
Q1 =a, P, = \a, Q3 = A+ a? etc. Combining (3.4) and (3.5) we get also

Qr = aQp-1 + AQg—2. (3.6)
Note that for all £ > 0 we have Q@ # 0 or Qr+1 # 0 because the assumption

Qi1 =0and Qr =0 via (3.6) gives Qr_1 =0,... ,Qo = 0, which is not the
case.
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Denote by D,, Vandermonde’s determinant formed by cy,...,cpn, ie.
D,, = det V] in the case d = —1.

Proposition 3.1. We have

det(V — ahVy — AR*V3) = (=1)™ QD h™
+(=1)"™AQm-1(c1 + -+ + ¢m) Dh™ fm + O(R™F?). (3.7)

Proof. Writing the columns of the determinant as rows with representative
element we get

—ah — M\R%¢;
1 — ahc; — Ah?c3 /2

(m —1)c*™? — ahc™™ — AR2c /m

det(V — ahVy — AR2VA) =

1+ (Pl/Ql)hCz
1 — ahe; — Ah2c2/2

= _th ................................... -
(m 1)0;“_2 ozhczm_1 — A2 fm
1+ (P1/Q1)hc;
— ()" m ¢i + (P2/Q2)hci /2

which gives the representation (3.7), when Q,, # 0,...,Q2 # 0. In general

case, take the sequences A\; — X,a; = a such that Q();,a;) # 0 for all j

and k. Then from (3.7) for A;, a; we get in limit process (3.7) for A,a. W
Since @, # 0 or Q—1 # 0, from (3.7) we get

Corollary 3.1. The matrix V — ahVi — Ah2V; is invertible for sufficiently
small h.

4. STABILITY OF THE METHOD
Consider the equation (3.3) in the case d = —1. Suppose that A # 0.
DEFINITION 4.1. We say that the spline collocation method by piecewise poly-

nomials is stable if, for any f € C'[0,T], the approximate solution u of (3.3)
remains bounded in Ly, (0,7) as h — 0.
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Let us notice that the boundedness of ||lu||;_ () is equivalent to the
boundedness of ||ay,|| in » and h in any fixed norm of R™.

In the case d = —1 we have Vy = V. Then, at least for small h, the matrix
W =V — ahV; — Ah2V, is invertible and (3.3) may be written in form

ant1 = (I + AW V3)a,, + AW 1 g,,. (4.1)

Let us mention for comparison that in the case of Volterra integral equation
the same collocation method allows to get the iteration process (see [5])

Unp41 = (M + U)an +rn

with constant matrix M, U = O(h) and r, = O(h) and the stability depends
only on the spectral structure of M and is determined completely by colloca-
tion parameters c;. We will see that the process (4.1) behaves differently.

Proposition 4.1. Matriz I+ h>W V3 has eigenvalue p = 1 with geometric
multiplicity m — 1.

Proof. 1t is clear that Ker(I +Ah2W ~1V3 — ul)=Ker(W +Ah2V3 — uW). The
geometric multiplicity of g = 1 is dimKerVs, but dimKerVs = m—rankVs. As
rankVs = 1, we get the assertion.

Besides the eigenvalue = 1 there is one more pu € spec(I + N2W~1V3)
which is equivalent to u — 1 € spec(Ah>W ~1V3). Thus, we have to find one
additional solution of det(Ah?V3 — uW) = 0 having already 0 as solution of
multiplicity m — 1 by Proposition 4.1.

Denote A = M2V and B = W with corresponding entries a;; and b;;.
Taking into account

a1 = ... =Qmly--- yA1m = - -+ = Amm
we get
a1 — pbi @1m — pbim
det(A—pB) = gt | DTl e bm =bam ) g
b11 - bml blm - bmm

Thus, we have det(A — uB) =0 if

. antMy1 +aiaMs + ...+ a1 My,
a bunMy + bioMo + ...+ by My,

(4.3)

with some M; obtained from the determinant in (4.2)
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Proposition 4.2. . We have
My = Qu_1h™ Dy + Py _1h™(c1 + ... + €) Dy /m + O(K™ ) (4.4)
with Q—1 #0 or Py,_1 #0,

My = —AQm_2h™Dyy — APp_2h™ (e + ... 4 ¢y) D /m + O(K™F2)

(4.5)
With Qum_2 # 0 or Py 2 #0,
My = X" Q3D /2 + O(K™F?) (4.6)
and
My, = O(h™2),k > 4. (4.7)

Proof. Writing again the columns of the determinant as rows we get

ah(c; — 1) + Ah2 (2 — c2)/2
2(c1 —¢i) + ah(c? —c2) + Ah2(c3 —¢3)/3

(m—1)(c"? =) + ah(c™h — 7N + AR (¢ — ) /m

ci —c1+ (P /Qu)h(c} — 1) /2
(Q2/P)R(c} — c]) + Ah*(c] — c]) /3

= th -------------------------------------------------------------
(m — 1)(01“_2 — c;”_z) + ozh(czm_1 — c{”_l) + AR% (¢ — ) /m

ci — ¢+ (P/Qu)h(c? — ¢3)/2

Lo 1| E—d+P/QIMG - D)3

which gives (4.4) after some straightforwards calculations with determinants.
As in the proof of Proposition 3.1, this argument is correct if @Q,, 1 # 0,

., Q1 # 0, but in general case the limit process will arrange the proof. The
other formulae (4.5)-(4.7) can be obtained by similar calculations. W

Proposition 4.3. For the solution (4.3) it holds
1) if Qm-1 # 0 and Q # 0 then p = —ANQm-1/Qm)h + O(h?),
2)if Qm-1#0 and Q,, =0 then p=—m/(c1 + ...+ cm) + O(h),
3) if Qm-1=0 and Q,, # 0 then u = O(h?).
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Proof. The main term in the numerator of (4.3) is Ah™*'Q,, 1D, for
Qm-1 # 0 and O(h™*2) for Q-1 = 0. In the denominator of (4.3) the
coefficient of A™ is —Q),;, D, thus the first and third assertion follow immedi-
ately. The coefficient of A1 can be found as —=A(c1 + ...+ ¢n) D Qm—1/m
which yields the formula for p in second case. B

Remark 4.1. It is natural to ask whether 4 in (4.3) may have higher order
in h than 27 In fact, more detailed calculations show that

M =Qp_1h™ D, + AQm—2h™symy1 Dy, /m
+ X2Qm_sh™ M symaD,y /m(m — 1) + . ..
+ A" LQoh*™ 2 symy, 1 Doy /M,

My = =AQm_2h™Dp — N2Qu_3h™ 3symy Dy /m — ...
— 22" L Qoh*™ 2 symy, _o Dy /M,

M,, = (=)™ ']A"1Qoh*™ 2D, /(m — 1)!

where sym; are standard symmetrical polynomials of ¢y,... ,¢,, of order i,
for example, sym; = ¢1 + ...+ ¢y, SYM2 = ¢1C2 + ... + Cp—_16,- Basing on
these developments it is possible to show with quite complicated calculations
that u = vh* + O(h**1),v # 0, for k > 3 is not possible, but in the case
Qm-1=0,Qm #0for c1 +...+ ¢y #m/2 we have u = vh? + O(h®),v # 0,
and for ¢ + ...+ ¢ = m/2 we get p = vh3 + O(h*),v # 0.

Thus, the matrix I + Ah?2W ~1V3, which we denote here by M, has eigen-
values with equal algebraic and geometric multiplicities. This implies that
its Jordan form is diagonal matrix with m — 1 entries 1 and one 1 + € with
e = O(h*),k = 0,...,3. The Jordan representation M = PJP~! gives
M™ = PJ"P~! and at least for k > 1 the matrix J" is bounded. We see that
the boundedness of M™ depends also on behavior of P and P~! in process
h = 0. Tt can be directly checked that the matrix A\R2W V3 or W1V
has the same eigenvectors as M and they are the columns of P. Take them
as an orthonormal system p',... ,p™ ! corresponding to 0 € spec(W ~1V3),
which give p!,...,p™ ! € KerVs, and p™ of Euclidean norm 1 correspond-
ing to € € spec(W 1V3). Clearly P is bounded. The boundedness of P!
can be guaranteed if | det P | > § for some § > 0. This takes place if we get
< p,q ><o||p| |lq]| with o < 1 for all p € KerV3 and all ¢ € Ker(Ah2V3 —puW)
which is equivalent to < p,q >< o|lp||||lg|| for all p € (KerV3)* and all
q € (Ker (\h2V3 — uW)=+. Here we may consider p = (1,1/2,...,1/m) be-
cause dim(Ker V3)* = 1 and ¢ = 3, ;c,, 4 Aj¢’ with ¢/ (we write ¢/ here
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in column)

A2 — p((—ah — Ah%c;)
¢ A2 /2 = u(1 = ahej — Ah?c3 /2)
AR? fm — p((m — 1)e* =2 — ahd] ™ — AR2c] /m

as ¢,...,q™ ! give a basis in (Ker (h?V3z — uW))* at least for small h. Let
@ = ¢ — Mh?p. Since detW # 0, ¢',...,g™ ! are linearly independent.
Similarly, we get also the linear independence of p, ¢*,... ,g™ ! for small h.
Then

m—1

<p,q>= ( )\j)/\h2 <pp> —p<p,mz_:1 A,-qj> . (4.8)
=1 j=1

<

We may consider only the "worse" case, namely, when ¢ is the projection of
p onto (Ker (\h2V3 — pW))+. Then in the process h — 0 the coefficients \;
stabilize and

m—1 m—1
(. 3" @) m aollplll Y A |
Jj=1 j=1

for some fixed o9 € (—1,1) due to the linear independence of p, @', ... ,q™.
In the cases pu ~ vh, v # 0, and u ~ const the last term in (4.8) is dominant
and we get < p,q > < o||p|| |l¢]] with ¢ < 1 (actually, ¢ — a9).

Note that the case p ~ vh¥, v # 0, k > 2 needs additional analysis but
similar arguments lead us also to the boundedness of M™.

Summing up the results of presented reasonings and Proposition 4.3 we
have

Proposition 4.4. The following holds

1) if Q. # 0 then the method is stable,

2) if Qm = 0 (and hence Q1 # 0) then for ¢1 + ...+ ¢y > m/2 the
method is stable, for c; + ...+ ¢y < m/2 unstable.

For example, let m = 3. We have Q3 = 2 a + o®. For 2 a + o® # 0 the
method is stable and for 2Aa+a® = 0 the stability region is ¢; +c2 +c3 > 3/2.

5. NUMERICAL TESTS

We use the test equation (3.1) with the solution y(t) = (sint+cost+e!)/2. As

an approximate value of ||u||« We calculated ) ;nnaéxN o g}%)io |un(tn_1 +kh/10) |

The results are presented in following tables. We can see different dependence
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of the stability on the cases Q,, = 0 and @Q,,, # 0, as well as on different choices
of ¢;, quantitatively in accordance to the theoretical results.

Case m = 2
a=1,A=1
N 1 16 64 256 1024
21 - 8'; 1.81554 1.77374 1.76551 1.76302 1.76254
2 — U.
21 B (1]'3 1.78039 1.76705 1.76353 1.76264 1.76242
2 — 1.
a=1,A=-1
N 1 16 64 256 1024
¢ =0.2 5.01 12,76 1.27-10'° 1.32-10% 9.82.10™
Cy = 05
Zl - g'i 3.71489  3.59568  3.56853  3.56193  3.56029
2 — U.
- (1]'8 3. 48360 3.52181  3.55030  3.55739  3.55916
2 — 1.
Case m = 3
a=1,A=1
N 1 16 64 256 1024
Cc1 = 0.1

cy =0.2 1.64625 1.66144 1.66684 1.66827 1.66863
C3 = 0.3
Cc1 = 0.2
c2 =0.5 1.65331 1.66493 1.66779 1.66851 1.66869
C3 = 0.9

a=2,A=-2
N 4 16 64 256
C1 = 0.1
ca=0.2 58.07  9.08-10% 7.11-10%7 2.79-10!%3
C3 = 0.3
Cc1 = 0.2
co=0.5 3.82646 3.78772 3.77323 3.76931
C3 = 0.8
Cc1 = 0.3

c2 =06  3.02214 2.56511 2.56229 2.56247
C3 = 0.9
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Kolokacijy metodo stabilumas Voltero tipo integro-diferencialinéms
lygtims

P. Oja, M. Tarang

Voltero tipo integro-diferencialiné lygtis sprendziama kolokacijy metodu. IStirtas metodo
stabilumas, kai naudojami trukus splainai. Parodyta, kad stabilumas priklauso nuo kolo-

kaciniy parametry ir nuo vienos testinés lygties parametry. Pateikiami skaiiavimo eksper-
imento rezultatai, kurie patvirtina visus teorinius teiginius.



