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ABSTRACT

The subject of this paper is the maximum principle and its application for the analysis
difference schemes. To some extent, it is a survey on construction and investigation of
some new classes of monotone difference schemes. The established maximum principle for
derivatives has a principal meaning. The coefficient stability of difference schemes in Banach
spaces is proved on the base of this principle. New results on unconditional stability of
difference schemes with weights, conservative explicit-implicit schemes (staggered schemes)
are given.

1. INTRODUCTION

The subject of this paper is the maximum principle and its application in
investigations of stability and convergence of difference schemes. It is well
known that the difference schemes satisfying the maximum principle are called
monotone. In other words, solution of monotone difference schemes is stable
in the norm C. It is very important to save the property of monotonicity of
difference schemes for numerical solution of applied problems with the aid of
a computer.

It is necessary to note a direct closeness of the notions — a monotone
scheme and conditionality of the system of equations Az = g, which arise
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on numerical solution of the corresponding difference scheme. Thus, the dif-
ference boundary problem that satisfies the maximum principle is called the
well conditional problem. Such definition of well conditionality is equivalent
to one of the accepted definitions in the theory of systems of linear equations
when they consider the number ||A||-||A~!|| as a measure of its conditionality.

To some extent this paper is a survey on construction and investigation of
some new classes of monotone difference schemes. In Section 2, the formu-
lation of the maximum principle (more exactly — its consequence) in one-
dimensional and multidimensional cases is given. The maximum principle in
a very comfortable view on investigation of boundary problems with not uni-
form boundary conditions is given. It is known that only one scheme with
the weight 0 = 1 for parabolic equation is unconditionally stable, i.e., when
establishing an a priori estimate of stability in the norm C' a connection be-
tween the time step 7, spatial steps hi, ha,...,hp, and the coefficients of the
equation is absent. In Section 3, it is shown that all the schemes with the
weight o > 1 possess such a property.

In Section 4, the maximum principle is used for investigating new classes
of conservative explicit-implicit schemes (staggered schemes). The maximum
principle for derivatives established in Section 5 deserves a special attention.
In Section 6, the coefficient stability of difference schemes in Banach spaces
is proved on the base of this principle.

2. STATEMENT OF THE MAXIMUM PRINCIPLE
The statement of the grid maximum principle one can be found in many
textbooks and monographs (see, e.g., [6; 8]). To obtain a priori estimates in

the norm C' various corollaries are mostly used, which are given below.

2.1. One-dimensional case

Let the function y; = y(x;) defined on a uniform grid
wp={z;=1h, i=0,1,... ,N} =wpU{z =0; zny =1}, (2.1)
be the solution of the problem
Awi-1 — Ciy; + Biyiyr = —F;, i=1,2,....N—-1, yo=yn=0. (2.2)
Let us define the grid norms:
I llo = max |-, I+l = mas ||
Lemma 2.1 [6]. Suppose that

Ai>0, B; >0, DiZCi—Ai—Bi>O, 1=1,2,...,N—1.
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Then for the solution of problem (2.2) the following estimate holds:
lyllz < IF/Dllc- (2.3)

2.2. Multi-dimensional case

In the rectangle G = {0 < z4 < ly, a =1,2,...,p} with the boundary T' we
set up a uniform grid

Wp = wp UYh, wp = {wz = (x§11)7___7$1()ip)), lq = 17"'7Na -1,

o® =0, ) =1, a=1,2,...,p)

with constant steps hy = xgil) - mgil_l), vy hp = a:,(,i”) - x,(,i”_l), ~p is a set of

the boundary nodes. To apply the maximum principle in getting the estimates
of stability, one should reduce the difference scheme to the following canonical
form [8, p. 293]:

Alz)y(z) = Y Blx,Qy(&) +F(z), z€wn, y(a)=nplz), z€n,
£es'(x)
(2.4)
and examine the following sufficient conditions on the coeflicients:

A(@) >0, B(z,6)>0, D(x)=4@)~ Y Bx¢>0, z€uw.
£eS'(z)
) (2.5)
Here S'(z) = S(z)\{z}, S(z) is a stencil of the scheme.

Lemma 2.2 [10]. Let the positivity property of the coefficients (2.5) be sat-
isfied. Then for the solution of the problem (2.4) the following estimate is
valid:

lylle < max {[lyllc,., [|IF/Dllc} (2.6)

1o - lloy = max] -1, I+ llo = max|-|.

where || - Iz = zergfécwh

The Lemma given is very suitable to study the stability of difference schemes
simultaneously with respect to boundary conditions and right-hand side (es-
pecially for nonstationary problems).

3. WEIGHTED SCHEMES
Let us consider the weighted difference scheme

v=92), Go=9n=0, y(,0)=ue(z), T €uw, (3.1)
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which approximates the simplest initial-boundary value problem for the para-
bolic equation. Here we use the standard notation of the theory of difference
schemes [6]:

y:yf :y(ﬂfi,tj), T; € Wh, t] Ew‘r:{tj :jTJ j:O;]-;---;jO_]-; tjo :T}a

ve=G-9)/7 §=y1"", vao = Gir1 =20 +4i-1) /B, ') = o+ (1 -0y,
0 < o <1 is a real parameter. Varying it, we can get the schemes with
different features: from pure explicit (¢ = 0) to pure implicit (¢ = 1). For
solution of this scheme the maximum principle is valid [6]:

max [|y(#)llo < [luolle (3.2)
Ewr

under the condition

h2
T<3 (3.3)

(1-0)
From the condition (3.3) it follows that if o = 1, then the monotone difference
scheme (3.1) is unconditionally stable in the norm C (there are no constraints
on a ratio of the grid steps 7 and h). If o # 1, then the scheme is monotone
under the constraint (3.3) only.

Let us show that for any o > 1 the scheme (3.3) is also unconditionally
monotone. Actually using the identity y; = (y{°) — y)/(o7) the difference
scheme (3.1) is reduced to the canonical form (2.2):

oT (o 20T o T (o o o
ﬁyg_)l + (1 + ?) Y + ﬁygﬁ =—y, " =y¥ =0.

Since all the conditions of Lemma, 2.1 are fulfilled, then from inequality (2.3)
we get the estimate

v lle < llylle-

As ||lyle > o|lillc — (6 = 1)||ly||c provided that o > 1, we conclude that for
any given ¢ a priori estimate (3.2) is valid for solution of difference scheme
(3.1).

Now we consider pure implicit scheme (o = 1) with inhomogeneous bound-
ary conditions:

Yt = giw + ¢, gO = Nl(ﬂa gN = N2(ﬂa y(SL',O) = UO(:E): T € Wh- (34)

Rewriting the difference scheme (3.4) in the canonical form (2.4), we see that
the positivity property of the coefficients (2.5) is carried out. Further, apply-
ing Lemma 2.2, we obtain the following estimate of accuracy in the uniform
metric [10]:

ey O < max { Iy Oles paxlyOle, | + 3wl

tEwr
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4. EXPLICIT-IMPLICIT SCHEMES

For numerical simulation of problems with singularities it is often convenient
to apply hybrid methods. These methods are based on the use of various
difference schemes in the corresponding domains.

These algorithms can often be written as schemes with variable weight
factors [7; 12]:

e = (Uza)' + 0, (4.1)
where 0 = o(z,t), (z,t) € w = wp, X w,. In the case of an explicit-implicit
scheme

0, if 7 is even,
o=o0; = (4.2)
1, ifdis odd.

In spite of the implicitness the solution of this scheme is obtained explicitly.
It appears that the condition of its stability in the norm C

T < h? (4.3)

allows one to find numerical solution with the time step 7 two times bigger in
comparison with the familiar explicit scheme (o = 0).

Explicit-implicit schemes were popular in 60-70 years. Then they have been
almost forgotten. A few years ago simultaneously A. Gulin, A. Samarskii [2],
R. Ciegis [1], and P. Matus, A. Lapin, I. Mikhiliouk [3; 4] turned our attention
to these schemes again, from absolutely different points of view. To our mind,
the main defect is that these schemes are nonconservative in consequence of
the failure to carry out the equality

Wae) ™ # ((92)™)

T,

when the weight o depends on a grid node. Therefore, in the case of these
schemes one fails to obtain a priori estimates in more weak norms and to
prove convergence of the difference schemes with reduced requirements to the
properties of the solution of a differential problem.

4.1. Conservative schemes

To construct a conservative method, let us write a scheme with variable weight
factors in the following form (for simplicity we consider homogeneous bound-
ary conditions):

yr = (yg({’))m +o, W=uu, w=yi'=0. (4.4)
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Consider numerical implementation of scheme (4.4) with weight factors (4.2).
Let ¢ be even. Then, from equation (4.4) it follows that

. 1 . T . 1 . .
vt =yl + T (vl ) + el

.+1 . T . .+1 .
Yo =i+ 7 (y%,i+2 - y%,z’—i—l) + 19l

Hence, it is easy to find yf“, yfill from the explicit formulas.

4.2. Stability with respect to the initial data and right-hand side

The following statement is valid [3].
Theorem 4.1. Suppose

ol 4+ ot h2
-t il <l, 71 <—F———. (4.5)
2 2— (o] +0i441)

0<o? <1,
Then for solution of the difference scheme (4.4) with arbitrary weight factors
ol satisfying the conditions (4.5) the following estimate holds:

(3

max [ly(#)lle < lly(0)llc + Y rlle®llc- (4.6)
i tEw,

Corollary 4.1. Assume that conditions (4.5) are satisfied and 7 < h2. Then
conservative explicit-implicit scheme (4.2), (4.4) is stable in the norm C and
a priori estimate (4.6) is correct.

4.3. Multi-dimensional case

In the two-dimensional case the corresponding conservative difference scheme
has the form

Y = ((yzl)(‘”’) + ((y@)(‘”)) +o,

T1 Z2

where

0, if iy is even,
O = Uk(.’L'k) = o T = lkhk.
1, if i is odd,

The appropriate a priori estimate of stability in the norm C (4.6) is fulfilled
provided that h; = hy = h and

h2
TE Rt t @ (ot o)
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5. THE MAXIMUM PRINCIPLE FOR DERIVATIVES
For a one-dimensional parabolic equation consider the implicit scheme
ye =Aj+ ¢, Aj =z, (5.1)

y(x,0) =ug(z), € wp, Y|y, = p = const. (5.2)
From the identity © = v + v, it follows that equation (5.1) can be rewritten
in the equivalent form
0 = 70z, + T, U9 =0n =0, (5.3)
where v = yz. The problem (5.3) is reduced to the form (2.2), if
It is obvious that for arbitrary 7 and h; the conditions of Lemma 2.1 are
satisfied and the recurrence relation

- . .
lyille < llyzlle + Tlletllc (5.4)

holds by virtue of the estimate (2.3). Assuming ¢ = 0, we rewrite equation
(5.1) in the form

Yt = TYtze + Aug + ¢(0).

Further we apply the maximum principle to the grid function v = y.(0),
v(0) = v(x;,0) with FF = Aug +¢(0). As a result, from the recurrence relation
(5.4), we get the estimate

t
lydlle < lAuo +¢(0)llc + Y Tlloe()llc- (5.5)

t'=1

Next, substituting into (5.5) the value of y; from equation (5.1) and applying
the triangle inequality |[Ag + || > ||Ag|| — ||¢||, we have

t
IAglle = llgeslle < l1Auo +@O)llc + llelle + D Tller@)lle. (5.6)

t'=1

The last estimate and the obvious inequality ||7]lc < ||lyllc + 7||y:||c yield the
following;:

t—T1
lylle < lluollc + ¢ (”Auo +oO)llc+ Y T||<Pt‘(t')||0> : (5.7)

t'=T1

Thus we have the following result.
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Theorem 5.1. For the solution of the problem (5.1), (5.2) for any t € w; a
priori estimates (5.5) — (5.7) hold.

Schemes for the multi-dimensional equations are constructed by analogy,
namely, we have

vt =AJ+¢, yo=uo, (5.8)

p
= Z Aa; Aay = (aa(m)yia)za; T € whp, yl’Yh =0. (59)
a=1

Difference scheme (5.8), (5.9) satisfies the grid maximum principle. Thus,
from Lemma 2.2 we have

max [|y(¢)llc < [ly(0 ||c+ZTII<P e (5.10)
=0

On the other hand, differentiating the difference equation (5.8) in ¢ by analogy
with (5.3), we get

Uy = A’lA)+(pt

Further arguments lead us to the estimates (5.5), (5.6), where the operator A
is defined from (5.9).

6. COEFFICIENT STABILITY

By means of the maximum principle for derivatives proved above we shall
obtain a priori estimates of stability of the solution when the coefficients
are perturbed. Obviously, the problem considered is very important since in
mathematical modeling of applied problems the coefficients of equations can
be given inaccurately. For instance, they have been computed as a result of
experimental observation, determination, etc.

In the nonstationary processes, which are described by parabolic equations
with the given boundary and initial conditions

?;t‘ = Lu+ f(z,1), u(z,t)lr = (), u(z,0) = uo(a),
the variable ¢ (time) plays the special role and that is why we have to dis-
tinguish it. Here L is a differential operator that works on u(x,t), where
z = (x1,%2,...,%p) is a point in a p-dimensional domain G with a bound
I'. The function u(z,t) is an element of the Banach space B for all fixed t.
That is why instead of u(z,t) we get an abstract function u(t) of the variable
0 <t < to with a range space in B, i.e., u(t) € B for all t € [0,%p]. The
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operator L is replaced by the operator A given in B. Thus, we obtain an
abstract Cauchy problem:

Z_;‘JrAu:f(t), 0<t<ty, u(0)=ug. (6.1)

The Cauchy problem is called stable with respect to the initial data and right-
hand side, if

t
la(t) — u(®)l| < MullGio — uol| + M> / I1F") = f(&")llat", (6.2)
0

where M;, M, are positive constants and @(t) is a solution of the following
problem with perturbed entrance data:

Z—?+Aa:f(t), 0<t<to, u(0)=1io. (6.3)

Let the operator A be constant, linear, and unbounded. Then definition
(6.2) is equivalent to the inequality

llu(®)] SMllluOII+Mz/||f(t')||dt'- (6.4)
0

Estimates like (6.2), (6.4) are well known in the theory of differential equa-
tions. However, the coefficients of the equations are an entrance data also.
Why then has this problem not been solved so far? Firstly, in view of the
relation

Al — Au # A — ),

the problem for the perturbation of solution z(t) = 4(t) — u(t) has already
become nonlinear; secondly, it is not clear how to estimate the norm of un-
bounded operator. In [5; 9; 11; 12] the coefficient stability both in continuous
and discrete cases was proved in Hilbert spaces only.

Consider the problem of coefficient stability in the Banach space. Using the
notation given above, let us approximate on the time grid w, the differential
problem (6.1) by the difference one

Yt + Aj =@, Yo = uo. (6.5)

The corresponding perturbed difference scheme has the form



298 A.P. Matus, P.P. Matus

Subtracting from the last expression the previous one, we get the problem for
the perturbation z =¢§ — y

2+ Az = (¢ — ) — (A A)j. (6.7)

Suppose that for the solution of the problem (6.5) the following estimate is
valid:

t—T1
Iyl < ligoll + > il (6.8)
t'=0
Then for the problem (6.7) the inequality
t—7 B .
121 < lido = woll + >° 7 {1 — wll + I (A — )3l } (6.9)
t'=0

holds. About the perturbation of the nonuniformly bounded operator A we
assume that

I(A = A)gll < allAg]l. (6.10)

Here o > 0 is a low bound of a set of constants satisfying (6.10). It specifies
a measure of vicinity of in general unbounded operators.
Substituting (6.10) into (6.9), we have

t—7 t—7
120l < lldo = uoll + > 7llé — ¢l +a > 7l Ag(E)]- (6.11)
t'=0 t'=0

Using the assumption (6.8) and estimation technique (5.6), the last term in
(6.11) is estimated in the following way:

t—7 t—7 t
aY Tl Ag)ll < a7 1¢(0) — Adoll + [Igll + D 7llge(t")l ¢ - (6.12)
t'=0 t'=0

=1

Estimates (6.11), (6.12) demonstrate stability with respect to perturbation of
the initial data, right-hand side, and operator (strong stability).

As an example, let us consider one-dimensional problem (6.5) with the
constant operator

Ay = —(ayz)z, T E€wn, yYyo=yn =0,
and the norm || - || =|| - ||c. Then
(A-A)j =~ ((@-a)i), -

Using the appropriate embedding theorem, it is easy to show that the estimate
(6.10) is carried out, where

a = aomax {||a —allc, [|az — azllc}-
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Maksimumo principas ir jo naudojimas baigtiniy skirtumy schemy
analizéje
A.P. Matus, P.P. Matus

Straipsnis yra apZvalginis. Jame apibendrinti rezultatai, skirti maksimumo principo nau-
dojimui, analizuojant baigtiniy skirtumy schemy stabiluma ir konvergavima. DidZiausias
démesys skiriamas sprendinio iSvestiniy jverCiams. Remiantis §iuo maksimumo principo
variantu jrodomas kai kuriy baigtiniy skirtumy schemy koeficientinis stabilumas Banacho
erdvése. Taip pat iStirtos ekonomiSkos schemos, skirtos daugiamaciy uzdaviniy sprendimui,
jvertintas skaitinio sprendinio tikslumas, kai naudojamas netolygus diskretusis tinklas.



