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ABSTRACT

The paper is devoted to the study of a heat conduction equations with mixed boundary
conditions on a surface of a researched solid. The method based on the Laplace and Hankel
transforms is suggested for the first time to reduce such differential problems to dual inte-
gral equations and to obtain the solution in the close form. Method allows to determine
analytically regularities of time-space development of appropriate temperature fields.

1. PROBLEM FORMULATION

We consider the heat transfer process where the heat flows to an isotropic

half-space solid through a circle of a known radius on the border surface. We

note that the solution of similar problems of mathematical physics is also

possible for other solids and regions (see, for example, [2], [3], [6], [8]-[11]).
The mathematical model based on the equation

1 1
Opr(r,2,7) + ;Hr(r,z,T) +0,.(r,2,7) = - 0-(r,z,7) (r>0,2>0,7>0)

(1.1)

with initial condition

0(r,2,0)=0 (r>0,z2>0), (1.2)

symmetry condition
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0,(0,2,7) =0 (2>0,7>0) (1.3)

and conditions at infinity
0(00,2,7) =0,(r,00,7) =0 (r>0,2>0,7>0). (1.4)

Here 0(r, z,7) = T(r,z,7)—Tp; r > 0 and z > 0 are a cylindrical co-ordinates;
7 > 0 is a time co-ordinate; T'(r,z,7) is a current temperature of half-space;
To = const is an initial temperature; a > 0 is a temperature conductivity
factor.

On a surface z = 0, generally speaking, the mixed boundary conditions of
the third kind can be given in the form [7]

a10(r,0,7) = N0, (r,0,7) = ay (Th(r,7) — To) + 1 (r,7), 0 <7 < R, (1.5)

as0(r,0,7) — A0, (r,0,7) = an (Tae(r,7) — Ty) + q2(r,7), R <7 < 0o. (1.6)

Here A > 0 is a heat conductivity factor, a; and as are a heat transfer factors
on a surface z = 0 with mediums having nonstationary temperatures T'.(r, 7)
and Ts.(r,7) in the corresponding ranges of a modification of cylindrical co-
ordinate 7, ¢; (r, 7) and g2(r, 7) are the corresponding densities of surface heat
sources on z = 0 inside of the circle (r < R) and outside of the circle (r > R).

2. INTEGRAL TRANSFORMS

To solve the problem (1.1)—(1.6) we shall apply Laplace and Hankel integral
transforms

0(r,z,s) /6rz7'exp 7) dr (Re s >0), (2.1)
0

u(p,2,8) //HrzTexp( sT)Jo(pr)r drdr (Re s > 0), (2.2)
0

where Jy(pr) is the Bessel function of the first kind (see [15]).

Next we shall assume Re s > 0 by default every time, when a complex
L —parameter s will appear.

Applying (2.2) to the equation (1.1), taking (1.2)—(1.4) into account and
using an inversion formula for the Hankel transform, it is directly verified that

_ 1_—
0r(p,z,s) = I;A(p, 5) exp (—z\/pQ + 2 ), (2.3)
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O(r,z,s) = 72@,3) exp (—g Ip? + 2 ) Jo(p) dp, (2.4)
0

where A(p, s) is an auxiliary analytical image-function.

Taking the solution (2.4) into account at z = 0 and using the Laplace
transform to mixed boundary conditions (1.5) and (1.6) we come to the dual
integral equations with L —parameter

7(041 + Ay /P% + 2 ) A(p, s)Jo(pr) dp (2.5)
0

— T
=0 (Tlc(r,s) - f) +7q,(r,s), 0<r<R,

70 (az 25+ 2) A )t (26)

= T
= (Tzc(r, 5) — ?0) +qy(r,8), R<7T<o00.

From here we have to define an analytical image-function A(p, s).

Note, that if s — 0 (that corresponds 7 — o0), then from the equations
(2.5) and (2.6) we come to dual stationary integral equations which were
investigated for the Laplace equation with mixed boundary conditions (see,
for example, [13], [14]).

We shall consider only the cases of mixed discontinuous boundary condi-
tions (1.5) and (1.6), which can be reduced to the appropriate dual integral
equations with I —parameter. In the other cases we do not need the applica-
tion of a method of dual integral equations, because we have the nonstationary
Dirichlet problem (for a; — oo and as — o) and nonstationary Neumann
problem (for @; = as = 0) in an isotropic half-space with unmixed discon-
tinuous boundary conditions of the first and second kinds. Those problems
are directly solved by using the inversion formulas of Laplace and Hankel
transforms.

When a; — oo and ay > 0 the function of excess image-temperature
Tic(r,s) — Ty/s is given on a surface z = 0 inside the circle 0 < r < R
while outside of this circle, the surface source g,(r, s) is exchanged by a heat
with a medium having image-temperature To.(r, s) and heat transfer factor
asy. In this case the dual integral equations (2.5) and (2.6) are transforming
to the form

/[1 - gl(pa S)] 61(;0, S) JO(pT) dp = Tlc(ra S) - %7 0<r< R7 (27)
0
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[Cuwo 2+ 2 hlor) dp= S Totrs), R<r<oo, (29
0

where
ol &) - — Qa2
C ,S8) = 1+ —— A y8), yS) = — =,
l(p ) )\\/p2—+§ (p ) gl(p ) a2+)\\/m

Faro9) = s (Taclris) = 22 ) 43,0,

When a3 > 0 and as — oo the surface source g (r,s) is exchanged by
a heat with a medium having image-temperature T1.(r, s) and heat transfer
factor a; on a surface z = 0 inside the circle 0 < r < R while outside of the
circle, the function of excess image-temperature Ta.(r, s) — Tp/s is given. In
this case the dual integral equations (2.5) and (2.6) are transforming to the
other standard form

[S) _ 1_
/ [1—(p,8)]4/P* + ZCz(p, s)Jo(pr)dp = Xfl(m), 0<r<R, (29)
0

/ 8)Jo(pr) dp = Tac(r,s) — %, R<r < oo, (2.10)
0
where
Ca(p,8) = Ap,5)  Golpr8) = ez,
ApPE+ 2

Fir9) = (Toelr9) = 2 ) 47,0,

In the general case when a; > 0, as > 0, and a? + a3 # 0 the substitution

Clp,s) = (Oéz + /P + 2 ) A(p, s)

yields the dual integral equations with L —parameter

C(p,s)Jo(pr) dp = f,(r,s), 0<r <R, (2.11)

/ 8)Jo(pr) dp = fo(r,s), R<r < oo, (2.12)
0
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where
Qg — O0q

9p,s) = ———F——.
9(p, s) o AP T E

Thus, the solution of the mixed two-dimensional axially symmetric nonsta-
tionary heat conduction problems for a half-space with heat input through a
circle of a known radius is reduced to the investigation of the standard dual
integral equations with L —parameter (2.7)—(2.8) or (2.9)-(2.10), or (2.11)-
(2.12). It is required to define the corresponding unknown analytical image-
functions C'1(p, s) or Ca(p, s), or C(p, s) in those equations.

3. SOLUTION OF DUAL INTEGRAL EQUATION

We consider the solution of the dual integral equations (2.7) and (2.8) in
the case fy(r,s) = 0 and g, (p,s) = 0. This case is really general, because
determining additional function f,(r,s) by a zero on an interval 0 < r < R
and including known function f,(r,s) to the right hand side of the equation
(2.7), the equation (2.8) is reducing (see [12]) to the homogeneous one. In
this case the dual integral equations (2.7) and (2.8) take the form

T T,
/ s)Jo(pr) dp = T1.(r,s) — ?0, 0<r<R, (3.1)
0

/él(p,S)\/pQJrgJo(pr) dp=0, R<r<oo. (3.2)
0

By analogy with Snedonn’s and Uflend’s methods (see [12], [13]) we shall
introduce an unknown analytical function p(r, s) connected with C1(p, s) by

the relation
R
Ci1(p, s) = §/ (t,s) cos (t1/p2+ 2) dt. (3.3)
%0

The substitution of this relation into (3.2) ensures the validity of the relation
(3.2) by the corresponding discontinuous integral at R < r < oo (see [4], [1,
p. 175]). If we substitute (3.3) into the first dual equation (19) and then take
some transformations, we come to the integral equation for the definition of
unknown analytical image-function p(r, s):

[ ch (VE@r? 1)) g sin (/2 (2 — 12))
/ i P(t,s) dt — / e B(t,s)dt  (3.4)
0

2—t2
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To solve the equation (3.5) we take some transformations and reduce this
equation to the form (see [1], [6])

R
o(r,s) — %/E(t, s)Ki(r,t,s)dt = Fy(r,s), 0<r <R, (3.5)

[=}

where

_ T. , T
In the case T1.(r,s) = ?c # ?0 the method of definition of unknown ana-

lytical function @(r, s) from the integral equation with L -parameter (3.5) was
developed in [5]. In this method the analytical function (%, s) is represented
by the series

P(t,5) =~ exp (-R@) gmw (V3" (3.6)

and the analytical kernel K (r,t,s) is represented by the power series

where

Then the equation (3.5) takes the form

wgmm (V3)" =2(T. = Ty) exp (R\/g) o (\[E)

R

oo

+/ > Cu(t,r) (VE)™ D enlt) (Vs)™ dt.

0 m=0
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From here (after some transformations) we obtain the equation for ¢, (r):

T3 nr) (V3)" =2(T. = To) 3 Du(R.7) (V5)" (3.8)
n=0 n=0
oo n R

+ Z Z (\/E)n/cm(ta T)Pn—m(t) dt, 0<r <R,
n=0m=0 0

where
s (A EC) G 6 €)= s

It is obvious that Cy(t,7) = 0 and the equation (3.9) is not an integral
equation for the definition of ¢, (r), and we obtain the recurrence formula for
the sequential definition of functional factors ¢, (r):

R
2 1<
¢a(r) = — (T = To) Dn(R, 1) + — > /Cm(t, T¢n—m(t) dt, 0<r<R.
m=0
(3.9)
So, the formula (3.9) yields
2 _ 2R(2+m)

po(r) = p (Te —To), i(r) = T ova (T — To),

R?—r? AR2(2+7)
+ 3
a m3a

ortr) = ( )@,

and so on.

Moreover, it is proved that in this case for functional factors ¢, (r) the
expression

on(r) = 2(T. — To) (Va) " Y Bni R 1 (3.10)
=0

can be obtain. Here constant numerical coefficients 8, ; can be define from
the recurrent formula

pus= (1) o () + 0 01 32 5 (77 9n 55) >
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1
Bnn = i cos (n%)

Substituting expression for ¢,(r) from (3.10) into (3.6) and taking the
formulas (3.3) and (2.4) into account we obtain the formula for the solution

5(7‘, Z, S) = M €xp <_R\/§> Z (\/g) Zﬂn,i Rn_i gi(ra 2, 3)5
n=0 =0

where
i pJO p’f’ S S
(r,z,s) t dt exp | —z4/p2+ — ) cos | ty/p?+ — ) dp.
N/ a a
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Dualiyjy integraliniy lygéiy metodas Silumos pernes$imo procesy
analizeje

P.A. Mandrik

Straipsnyje nagrinéjamos Silumos perne§imo lygtys su miSriomis kra§tinémis salygomis tiri-
amo kuno pavir§iuje. Metodas remiasi Laplaso ir Hankelio trasformacijomis, kurios suveda
§j diferencialinj uzdavinj j dualigsias integralines lygtis. Metodas leidZia analitiSkai apibrézti
ivairiy temperaturiniy lauky laikinj — erdvinj kitima.



