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ABSTRACT

The third order hyperbolic linear differential equation is considered in the non-cylindrical
domain of multidimensional Euclidean space. The equation operator is a composition of
a differentiation operator of the first order and second order operator, which is hyperbolic
with respect to the prescribed vector field. Apart from the equation, Goursat and Cauchy
conditions are defined for an unknown function. Thus the boundary of the domain, where
this hyperbolic equation is defined, consists of characteristic hypersurfaces, the hypersur-
faces, where Cauchy conditions are prescribed, and hypersurfaces with no conditions. For
the mentioned problem the existence and uniqueness of the strong solution are proved using
mollifying operators with a variable step and functional analysis methods on the base of
the previously proved energy inequality.

1. INTRODUCTION

In the theory of partial differential equations there exists a formulation and
decidability problem for well-defined problems. The term ’well — defined prob-
lem’ was for the first time used by J. Hadamard in 1930th. [1], [2], [3]. Finding
a well — defined problem, uniqueness and existence proof for its solution, and
solution continuous dependence on the input data proof as well as solving
the problem numerically are essential parts of creating models for natural sci-
ence problems. The results of I.G. Petrovsky’s research on Cauchy problem
published in 1937 [4], [5] were a foundation for creating a modern theory of
partial differential equations. Cauchy problem for hyperbolic equations was
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also considered in that work. L. Gording made an important step towards
solving that problem by using functional analysis methods in a set of func-
tional spaces [6], [7]. Many books and articles are dedicated to the solvability
of mixed problems for hyperbolic equations; and the works on mixed problems
in the case of cylindrical domains do much more than a half of all the works
[8] — [11]. In his book [12] J.-L. Lions emphasizes the urgency and significance
of exploring the problems for evolutionary type equations in the case of non-
cylindrical domains. Despite the first works in this sphere appeared quite a
long time ago (see, for instance, the [13] — [20] and others.) many scientists
still keep focusing their attention on it; and the great number of publications
proves it. The mentioned works relate to a case of two independent variables
or to a case of the simplest domains where the main equation or their system
is defined. The interest to boundary value problems for hyperbolic equations
is caused not only by the evolution of the partial differential equations theory,
but also by the necessity to solve the problems which appear during the pro-
cess of simulating physical and other situations in time-depending spheres. A
method of energy inequalities and mollifying operators with a variable step [21
— 26] allows to solve the decidability problem for many boundary value prob-
lems for hyperbolic equations defined in noncylindrical domains with quite
general configuration. A strong solution of such problem for the second order
hyperbolic equations, where hyperbolicity is defined with respect to the pre-
scribed vector field, is considered in [21]. Considering the results of this work
as a base, we prove the existence and uniqueness of the solution of Goursat
problem for some hyperbolic third order equations.

2. DEFINITION OF THE PROBLEM AND FUNDAMENTAL
RESULTS

We consider the functions of independent variables z = (x,--- ,z,), where
z are elements of n — dimensional Euclidean space R"™. Remember that we
consider the boundary value problem with Cauchy and Goursat conditions
for the third order linear partial differential equation. The equation opera-
tor is a composition of differentiation operator 9/0p and hyperbolic one
over the prescribed vector field M second order operator A(z, D) with partial
derivatives w.r.t. x;,¢=1,---,n.

Let N be a vector field that is defined over R™ and belongs to C? and let
unit vectors (@) = (m(2),-- - ,ma(@)), @) = n}(@) + -~ +n2(@) = L,
be its elements. At the beginning we consider the second order linear partial
differential equation

n

A(z,D)u = Z (aij(w)ug;)e; + Z a;(z)ug; + ao(x)u, (2.1)

ij=1

2 .
where Ug; = %7 Ug;z; = %7 Qij = Qji (Z7J =1, an); a,']‘(.’E),a,'(.’L') are

prescribed functions of independent variables z in bounded domain ) C R™.
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DEFINITION 2.1. An operator A(z,D) at the point x over direction n(z) is
called hyperbolic if the following conditions hold:

n
e characteristic polynomial Ag(z,n(z)) = Ao(n) = Z ij (Z)mim; isn’t
Z

l
equal to zero (in order to be exact we regard Ag(n) where § is

positive number);

e polynomial Ay(z,mn(z) + &(x)) in 7 € R! has two different real-valued
solutions, where £(z) = (§1(2),...,6(2)), [€(2)] = 1, (n(z),&(z)) =

; ni(2)& (z) = 0.

DEFINITION 2.2. An operator A(z, D) is said to be a hyperbolic operator in
closure Q C R™ of domain @ if it is hyperbolic at each point 2 € Q over
direction n(z), which belongs to the vector field N prescribed over Q.

Suppose that a boundary 9@ of domain @) is piecewise smooth. We’ll divide
the boundary surface 9@ into classes. For this purpose we’ll use characteristic
polynomial, vector field N, and external normal vectors v(z) (z € 9Q).
Let us denote by K(z) the characteristic cone of differential expression (2.1)
in the case of corresponding values of coefficients a;;(x) at the point z € Q.
The set K () is defined by a totality of vectors {(z) = u(tn(z)+£&(z)), where
n€[0,00), 7€ R and 7Ao(w;m) > —Ao(;m, €)+Gy* (w51, €), Gyl m, €) =
n

Aj (25, €)—Ao(z;m) Ao(; €), Ao (23, €) = ’Zl aij(x)ni()¢; (x), vectors n(z)
,1=

and £(x) are the ones from Definition 2.1. Let KX (z) be a dual cone w.r.t

K(z), e.g. K+ (z) = {x(2) = (x1(2),-- -, xn(2))|(x(2),{(2)) = gxz'(w)(i(x)

> 0 for any vector {(z) € K(z)}.
Now we consider the third order differential equation in domain @) C R"

Lu= A(z; D)

5o+ Blz:Dju = f(z), (2:2)

where Ju/0p = > pi(x)0u/0z; is a derivative in the vector direction p(z) =
i=1

(p1(x) ..., pn(x)) of the prescribed vector field P, B(x, D)u = i bi(z)0u/0z;

i=1
+bo(z)u.
Let R be a vector field consisting of elements r(z) = (r1(z), ..., (x)) and
let the following conditions be satisfied:
(R1) Vector r(z) is an internal vector of the cone K (z) for each point = € Q;
(R2) A field R belongs to C*.

Let v(z) = (v1(x),-..,vn(x)) be a unit vector of perpendicular to surface
0@ at the point € 8Q. This perpendicular is external with respect to domain
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Q. Denote by r, a scalar product (r(z),v(z)) = Y ri(z)vi(z) = r,. Suppose

i=1
that Q) consists of the following parts:
So = {z € 0Q|Ao(z;v(x)) > d,7,(x) > 0,6 > 0};
S1 ={z € 0Q|Ao(z;v(x)) =0,7,(z) >0, };
Sy = {z € 0Q|4o(z; v(2)) < 0, (p(2),v(z)) = 0};
Sz = {z € 0Q|Ao(z;v()) = 0,7, (z) < O}
Sy ={x € 0Q|Ao(z;v(x)) > 46,7, (x) < 0}
Note that hypersurfaces S; (i = 0,...,4) are not necessarily simply con-

nected sets!
Add the following homogeneous Goursat conditions to equation (2.2)

ou
uls, = uls; = 3—’/‘5 =0 (2.3)
and Cauchy conditions to Sy
&'u .
Kiu = 6_1)2 S4 = QOz(.Z'), 1= 0, 1,2, (24)

where 0% /0p® = u, 0/0p is a derivative in the vector direction p(z) =
(p1(z),...,pn(x)) of the prescribed vector field P from C!, which is not tan-
gent to Sy.

Treat the problem (2.2) — (2.4) as an operational equation

Lu = {Lu, bou, biu, bru} = F, (2.5)

L is defined over D(L) = {u € C3(Q)| and satisfies the conditions (2.3)},
where C3(QQ) is a set of third order continuously differentiable functions de-
fined over Q.

Let us define B and H spaces in order to characterize the fundamental
results with respect to problem (2.2) — (2.4) strong solution existence.

Let S(z) be a section of domain @ such that S(x) passes through the point
z € @ and the following conditions are satisfied:

e Ao(y,v(y)) > 6 > 0 for y € S(z), where v(y) is a unit normal vector to a
surface S(z) at a point y € S(z);

e S(z) is a piecewise smooth hypersurface such that smooth parts of it are
members of C!;

e Two different sections from a totality of sections {S(z)},.g are mutually

disjoint at each point z € () and all points of the first section are on the
one side with respect to the second section;
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e Normal vectors v(y) for y € S(x), which are located on the same side of
hypersurface S(z), all together make either acute an angle (r,(y) > 0) or
an obtuse angle (r,(y) < 0) with corresponding vectors 7, (y).

This statement is true for all points y € S(z) of each section S(z).

To each section S(x) we assign the parameter ¢ and write St. Let Q =
= Up<i<1S; for t #1 (¢, € [0,1]) St S* = 0 (B is an empty set), hypersur-
faces Sp and Sy are members of {S(z)},.g and Sp = S, Si = S°.

Denote of B a Banach space so that B is obtained by enclosing the set D(L)
with respect to the norm

lulla = sup (ng—y

+ D% ullzysh )
N

Lo(St)

where || e, (s+) is @ norm of functional set defined over hypersurface S*. Each
function of this set is Lebesgue quadratically summable.
Denote by H a Hilbert space

where L»(Q) is a set of functions that are Lebesgue square summable over
Q. H(S,) is i — ordered Sobolev space of square summable functions and
derivatives over Sy. H}(S4) is a supplement of D(L) with respect to H*(Sy)
space norm; and Hp(Ss) = L2(Ss).

Condition 1. Let P be a vector space; then a scalar product p,(z) of
vectors p(z)and v(x) is greater than zero for each point z € S;.

Condition 2. Equation (2.2) coefficients a;;(z) € C1(Q)(4,7 = 1,...,n)
and all the other coefficients are bounded and measurable.

Theorem 2.1. Under Conditions 1 and 2 for problem (2.2) — (2.4) operator
L we have energy inequality

llullp < ¢l Lul| (2.6)
for each u € D(L). A constant value ¢ > 0 does not depend on u.

Condition 3. Let ) be a domain; then it’s possible to partition it into
a finite number of domains using sections S(z). Moreover, for every subdo-
main Q;( U:0:1 Q; = Q) it’s possible to select a vector field R (consisting of
elements r(z) = {ri(z),...,r,(z)} ) so that the following conditions hold:

1. (R1) — (R2) conditions are satisfied in the case of Q;.

2.7,(z) = (r(z),v(z)) = 0 for each point x € S, Q;. v(z) is a unit
normal vector at the point z € Sy () Q; with respect to Q;.
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3. Q; is a convex set with respect to the field R in the following sense.
The elements of R are uniquely determined at each point x € R®. R
generates a totality of curves {r}, which the field is tangent to. Domain
Q; is called a convex domain with respect to R if @; can intersect every
curve r, which R is tangent to over a simply connected set.

Condition 4. Subdomains @; (i = 1,...,4p) are convex sets with respect
to vector field P.

Operator L allows closing L as an operator from B to H. The proof of this
fact is trivial and uses just general definition of the operator closure.

DEFINITION 2.3. The solution of the operator equation
Lu=f, weD(L),
is called a strong solution of the problem (2.2) — (2.4).

Theorem 2.2. Suppose that conditions 1 —4 and So|JS1 # 0, SaUSs #0
(where § is an empty space) are satisfied; then for every F € H there exists a
unique strong solution u € B for the problem (2.2) — (2.4), and

lulls < e[l F |, (2.7)

where ¢ is a positive constant value.

3. THE ENERGY INEQUALITY (THEOREM 2.1) PROOF

Each section S* (0 < t < 1) divides the domain @ into two subdomains Q*and
Q. By Q! we denote a subdomain such that external vector v(z) (z € S?),
which is normal to hypersurface St and makes an acute angle with vector r(x)
with respect to Q! that is scalar product r, (z) > 0.

Then we integrate the expression Lu a‘fg‘p over Q!, where 8?u/0rdp =

n
3 ri(z ) (pj( ) ) By Cauchy — Buniakowski we have inequality

i,j=1
2
D Lon |’
o<1 2(Q)

i RS o) 2
(3.1)

(B(:c, D)u, %)LQ(@

o( X 5

where c; is a positive constant value. Note that the function 8%u/0rdp is
equal to zero over Sy and S3, according to (2.3) conditions and by definition
of vector field members p.
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Therefore by applying Theorem 3 proof from [21], (3.1) inequality and then

integral Gronwall inequality [7] (I, lemma 7.1), [27] (lemma), we get the fol-
lowing estimate for some ¢, > 0 and ¢3 > 0

o 0u |2 o 2 )
> |p %HLM — e qu 1Dl g, < es(l1Cull2, o,

laf<1
2
+ Z ||€z'u||fq§—i(54))- (3.2)
=0

If we combine the following equality

d 2 - du
— (Dau) =2 D%u—D%p;
207 |a|251 ; o1

o<1

with Condition 1, we get the inequality

o 112 o O0u |2 o 112
I CANER 3 L5 7 D o) L |

o<1
Adding it to (3.2) and applying Gronwall inequality, we finally have

o du . S
> (1775l sy 1070l < es (0l + D Wil e-is,)

la|<1 i=0

and energy inequality, which is being proved, easily follows it. _
Passing to the limit in (2.6) we obtain energy inequality for operator L

lulls < ellZulle (3.3)
Inequality (3.3) is true for any function u from range of definition D(L) for
operator L.

4. THEOREM 2.2 PROOF

Since the problem (2.2) is linear, it follows that the problem strong solution
is unique. Moreover, it satisfies the estimate (2.7) in case it exists. Taking
into account a general theory of closure operators, we obtain that to prove
the existence problem’s (2.2) — (2.4) strong solution for every F' € H we just
have to prove that the set R(L) of operator L values is dense in H [28], [29].
Furthermore, by extending the parameter method (see Theorem proved in
[29]), it’s sufficient to prove that the set R(Lg) of operator Lo = {Lo, fo, 41,42}
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values is dense in H, where operator Ly range of definition D(Ly) is equal to
D(L)a ‘CO = AU(xa D)a/apa

"0 0
A D)= 3 5 (a5(@)5-)-

Let the equality

0
(Aoa—p;ﬂ)Lz(Q) + (EOuJ’UO)Hf(SQ + (Elu;vl)Hg(S4) + (Lou,v2) p,(5,) = 0
(4.1)

be true for a certain element 4 = {v(z),vo(x),v1(x),v2(z)} and for each
u € D(Lg). Supposing u to be any element of Dy(Lo) = {u € D(Lo)| fou =
= lu = lru = 0}, in (4.1) we get

(AOZ_Z’ 19) i =" (4.2)

for every u € Do(Lg). According to Theorem 2 conditions, we get that both
derivatives w(z) = du/dp over Sy |J S3|JSs and Ow/dp over Sy are equal to
zero for each u € D(Lg). Therefore the equality (4.2) can be considered as
orthogonal condition for element ¢ € L2(Q) and operator Ag set of values Agw
for every w € D(Ag) = {w € C3(Q)| w = 0 over Sy |JS3JSs and dw /v =0
over Sy}. Thus as it follows from Theorem 4 proof in [21], we have (4.2) for
the case ¥ = 0 over Ly (Q).

Turn back to equality (4.1). £;u (i = 0,1,2) are linearly independent and
each operator ¢; set of values R(¢;) makes a dense set in corresponding space
H?7%(S4) in case u runs through the whole range of definition D(Lg). Thus we
have that (4.1) is an equality for each u € (L) if and only if all v; (i =0,1,2)
are equal to zero. We see that v is a null element of H. This completes the
proof of Theorem 2.2.
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Treéios eilés tiesiniy hiperboliniy lygéiy Goursat uZdavinys
V.I. Korzyuk

Daugiamaté Euklido erdvés necilindrinéje srityje nagrinéjama treCios eilés tiesiné hiper-
boliné lygtis. Lygties operatorius yra pirmos eilés diferencialinio operatoriaus ir antros
eilés operatoriaus, kuris yra hiperbolinis apibrézto vektorinio lauko atZvilgiu, kompozicija.
Srities kontiira sudaro charakteristinis hiperpavir§ius (jame formuojama Goursat salyga),
hiperpavir§iaus, kuriame formuluojama Caushy salyga, ir laisvas nuo bet kokiy salygy hiper-
pavir§ius. Naudojantis kintamojo Zingsnio suvidurkinto operatoriaus bei funkcinés analizés
metodais, paremtais energetine nelygybe, jrodytas §io uzdavinio stipriojo sprendinio egzis-
tavimas ir vienatis.



