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ABSTRACT

The approximation of axial-symmetric heat transport problem in a cylinder is based on
the finite volume method. 1In the classical formulation of the finite volume method it
is assumed that the flux terms in the control volume are approximated with the finite
difference expressions. Then in the 1-D case the corresponding finite difference scheme for
the given source function is not exact. There we propose the exact difference scheme. In 2—
D case the corresponding integrals are approximated using different quadrature formulae.
This procedure allows one to reduce the heat transport problem described by a partial
differential equation to an initial-value problem for a system of two ordinary differential
equations of the order depending on the quadrature formulae used. Numerical solutions
of the corresponding algorithms are obtained using MAPLE routines for stiff system of
ordinary differential equations.

1. THE MATHEMATICAL MODEL

The model we consider in this article is the homogenous infinitely long cylinder
with the radius [. We consider the following dimensionless initial boundary
problem for the temperature T'(¢,r) distribution in the cylinder in the follow-
ing form:

6T_18(6T

or_1o Tar)w(T), re(0,0), >0, (1.1)
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677‘2 = f2(T2): (13)
T(Oa"') = TO(T)a S [Oal]u (1'4)

where T(t,r) is the dimensionless temperature distribution in the cylinder,
F(T) is a nonlinear function, for example, nonlinear heat source arising from
chemical reactions, Typ(r) is the dimensionless initial temperature, and we
denote Ty (t) = T'(t,0), Ta(t) = T(t,1).

The nonlinear function f2(7) in the boundary condition (1.3) describes the
radiation from heaters and convection, as an example,

f2(T2) = Biy (0}, — T3) + Ba(8, — To),

where By, Biy are Biot numbers, 6, is the dimensionless temperature of
heaters, 6, is the dimensionless temperature of air. The boundary condition
(1.2) describes the axial symmetry of the problem.
Note that the equation (1.1) when » — 0 turns to the heat transfer equation
in the Cartesian coordinate system
oT o*T
— =2— + F(T).
ot or? (T)
The initial temperature distribution (1.4) is consistent with the boundary
conditions (1.2)  (1.3) in the form

T!(0) = 0
{ Ti0) = F2(T(0) (1.5)

We assume that the initial temperature of the surface of the cylinder is con-
stant: Ty(l) = Ty. The initial temperature distribution s given in the form

12—

,,.2

To(T) = T* -

oT
satisfies the consistency conditions (1.5). There we denote T' = —.

r
In this case T1(0) = T5(0) = Ty —1/2 fo(T) and T»(0) = To(l) = T.

Applying those values in the equation (1.1) and taking in account its behavior

when 7 — 0, we obtain the following conditions equivalent to the (1.5):

n@:ﬂ—%MR)
Tl(O) = %f2(T*) +F (T* - éf2(T*)> ’

T,(0) = & o (T.) + F(T.)

(1.6)
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. OT
where T = e

2. FINITE VOLUME METHOD FOR TWO-POINT SCHEME

We use the method of finite volumes [1; 2| for the approximation of the dif-
ferential problem (1.1)—(1.4). We consider only two grid points in the r—
direction: r; = 0, ry = [. However, considering one of the grid points in
the center of the cylinder (r; = 0), complicates the problem: we have to use
two different heat transfer equations when building our approximation scheme
(remember the behavior of the equation (1.1) when 7 — 0). Therefore we in-
troduce the small value € > 0, and build our initial approximation considering
r =e&.
We rewrite the equation (1.1) in the form

r (T - F(T)) = (T (2.1)

We integrate the differential equation (2.1) from € to r = /2, thus obtaining
the integral form of the conservation law within the interval r € (g,1/2):

1/2
Wos — W, = / rG(t,r)dr, (2.2)

where W(t,r) = rT' is the generalized flux—function and we use notation
Wos = W(t,1/2), We = W (t,e), G(t,r) =T — F(T).

By integrating the equation (2.1) from r = [/2 to r € (g,l) and then from
€ to 12, we obtain

1 l dr T
T2 — TE = ln - W0,5 + - EG(ta f) df:
I3 e T Ji

where T, = T(t,¢).
Expressing Wy 5 and applying it to (2.2), we obtain the 2-point difference
equation :

l l l/2 l d’l“ T
Ty—T. —tnlw, =mn! / rG(t,r) dr + / e
€ € Je e T Ji

The right-hand side integral in this expression can be easily evaluated by
changing the integration order, and thus we obtain the difference equation

1
T, —1T. —lnéVVE :/ rln%G(t,r)dr.
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Assuming that the right-hand side integral converges when € — 0, and taking

l
in account that 7. — 71 and from the boundary condition (1.2) In - W.—=0

when ¢ — 0, we obtain the 2-point difference equation associated with the
grid point r:

1
TQ—le/ rln%G(t,r)drERl. (2.3)
0

Now we should obtain the difference equation associated with the grid point
ro. This is the point on the surface of the cylinder, therefore we can ignore
the behavior of the equation (1.1) in the center of the cylinder.

We integrate the equation (2.1) within the whole domain r € (0,1), and
obtain the integral form of the conservation law within this interval:

l
Wy —Wh = / rG(t,r)dr, (2.4)
0

where Wy = W (t,1), W1 = W (t,0)

From the boundary conditions (1.2) and (1.3) it follows that, Wy = »T'|,_, =
0, Wy = rT"|,_; = lf2(T2). Therefore from (2.4) we obtain the equation as-
sociated with the grid point rs:

1
lfQ(TQ) = ‘/0' TG(t, T) dr = RQ. (25)

The difference scheme (2.3), (2.5) is exact. The right-hand side integrals
can not be calculated exactly, therefore they need to be approximated.

3. APPROXIMATION OF INTEGRALS

We use the quadrature rule of interpolating type for both the integrals R; and
R5, considering only two—point integration formulae involving points r; = 0
and ro = [. There, many of different approximation methods can be used:
involving only function G, involving first order derivative of G, second order
derivative of G etc. We will show the one involving second order derivatives
of function G.

Let us denote G1 = G(¢,0) and G2 = G(t,1). The the derivatives G},

"

!, G, GY can be found using the boundr:bary conditions (1.2), (1.3) and the
equation (1.1). There we denote G(™ = S
r
Substituting £ = /I, we move to non—dimensional form and thus have two
grid points £ = 0, £ = 1. Therefore integrals R; and Ry can be expressed
with non—dimensional integrals I; and I as follows:

1 1
Ri=ih h=- [ emeg©ds Ra=ih b= [ oe)ae,
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where g(&) = G(t,&l). Denoting g1 = ¢(0) and g5 = g(1), we approximate the
integral I; with the expression

I, = Ajgi + Ajgs + Bigi + Bygy + Cl g + Cig + Eog )(m),

where 11 € (0,1).

We postulate that this approximation must exactly integrate polynomials
with as possible high order. Presuming g(¢) = &7, j = 0, 5, and after the calcu-
lation of the right—hand and left-hand sides of the approximating expression,
we obtain the system of linear algebraic equations in the form

1\’ , ,
(ﬁ) =A0+ A+ (BI0V +By) +i(i—1)(CL +C3),5=0,5.
Defining 0° = 1, this system solves to A] = 106/735, A} = 311/2940, B] =
118/3675, B} = —1181/44100, C} = 319/117600, Ci = 1107/44100, E} =
—533/235260.

Similarly, approximating the integral I, with the expression

I = Ajg1 + A3g> + Bigi + B3gy + Ci g + C3 g + Eog (772)

where 7o € (0,1), and using the same techniques as for the integral I;, we
obtain the coefficients A? = 1/7, A2 = 5/14, B? = 4/105, B2 = —13/210,
C? =1/280, C3 =1/210, E3 = —1/280.

Moving backwards from the non—dimensional integrals to Ry, Rs, one should
take in account that g(™ = [*G("). Then the integrals R; and R are approx-
imated using the following expressions of Hermitian interpolation:

Ry =1[A}G1 + A}Go + 1 (BIG} + ByGY) + 17 (Clg! + Cigl) + 16, ],
(3.1)

Ry =1[A]Gy + A}Go + 1 (B}G} + B3GY) + 17 (CRg) + C3gY) + 16, ,
(3.2)

where the truncation terms are
18 O8G(t, ) 1 8%G(t, )

- = i 0,1).
Te: = 69387200 or6 "%~ 201600 o6 2 € (0D

4. SYSTEM OF ODES FOR TWO-POINT SCHEME

Using the difference equations (2.3) and (2.5), and the right—hand side inte-
grals’ approximations (3.1), (3.2) with neglected error terms ¢, ,, the approx-
imate numerical solution for the temperatures in the center of the cylinder
T (t) and on the surface of the cylinder T (t) at every time step ¢ > 0 can be
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found by solving the following stiff system of two nonlinear ODEs with initial
conditions (1.6):

{ Gﬂ:?l + aéjﬁz + b%iﬁ + b%TQ = (4.1)
2 2 2 2 — ? -
CL1T1 + CL2T2 + blTl + b2T2 = C9
where the coefficients are
319 107 1 1
1 _ 3 1 _ 3 2 _ 1 g3 2 _ 1 g3
“ = oam200 0 2T @m0 YT me0l 0 27T aa00
(106 319
bl=1|— -1 F'(T B =1|2 - p(T
17" 735 " 235200 ( 1)} ’ [7 5600 (1|
[ 311 107
1 — 2 FI T
by =1 12940 1575f2( 2) = gaig0T ¢ 2)] ’
b2 =1 (5 _ f (Ty) _plp (T)
27014 2 210 ’
T, — T, 106 311
= 1| =2F(T} 120 ) (T
“ I [735 (1) + 2940 7 (1) — Uiz I (1) £o(T2)
107
2 1"
2 NPT BT,
5 1,
ca = fo(To) +1 F(T1)+ 4F(T2) l 5F (T2) fo(T2)
1
R TCATIE
(9f2 oF
! !
There we denote f5(T) = a7 and F'(T) = T

5. NUMERICAL RESULTS

The numerical solutions of stiff system of ODEs (4.1) are obtained using Maple
routines "gear", "mgear" and "lsode", and Mathematica automated routines
selection.

The approximate values of T are compared to the values of T obtained
by the Fourier series in the linear case and by the explicit finite difference
method with the space step h = 0.02 and time step 7 = h2?/6 in nonlinear
case. Comparison of the values of temperature obtained by different numerical
methods can be seen in the tables Tab. 1 and Tab. 2. The results of numerical
calculations are also presented on figures Fig. 1 and Fig. 2. The control values
for the temperatures T1, Ty for homogenous equation (F' = 0) are computed
using (4.1) by:
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Table 1.
Linear case
t T} Ty Ty T
0.1 .1104482 .4009834 .1104034 14009697
0.2 2280236 4829622 2280027 4829517
0.3 3318242 .5530239 3318127 .5530166
0.4 14220097 6134577 14220019 6134523
0.5 .5000886 .6656946 .5000827 6656905
0.6 5676328 7108672 5676284 7108641
0.7 6260534 7499350 6260502 7499327
0.8 6765808 7837238 6765786 7837222
0.9 7202810 .8129469 7202797 .8129459
1.0 7580765 .8382215 7580761 8382211
Table 2.
Nonlinear case
t Ty Ty Ty Ty

0.2 .270010 416660 .270009 1416659

0.4 .386560 527399 .386557 527388

0.6 497798 .628336 497788 .628316

0.8 .600100 715880 .600082 715851

1.0 .690086 788060 .690059 788024

1.2 765647 .844957 765613 .844919

1.4 .826416 .888230 .826380 .888190

1.6 .873533 .920264 .873498 1920232

1.8 .909019 1943541 .908986 1943513

2.0 1935160 .960229 1935131 .960206

1. In linear case: T, = 0.3, B, = B = 0.9, Bi, = 0 at the moments of
dimensionless time ¢; = 0.1 x 4, ¢ = 1,10;

2. In nonlinear case: T, = 0.3, Bip, = Bi = 0.3, By = 0, at the time
moments t; = 0.2 x ¢, 1 = 1,10.

Comparing the numerical results, it is visible that the method (4.1) is ac-
curate in average up to 4** decimal place. In some cases its accuracy is up to
5th_6th decimal place.
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Figure 1. Linear case (darkest Figure 2. Nonlinear case (darkest
curve—T1) curve—T1)
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Apie vieng simetrinés Silumos laidumo lygties sprendimo algoritma
H. Kalis, A. Lasis

Naudojantis baigtiniy turiy metodu sudaryta tiksli schema, susiejanti sprendinio reik§mes
srities kraste ir simetrijos taske. Gautoji lygé¢iy sistema aproksimuojama skaitinio integrav-
imo formulémis ir sprendziamas pradinis dviejy diferencialiniy lyg¢iy sistemos uzdavinys.
Pateikti skaitinio eksperimento rezultatai.



