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ABSTRACT

In this paper we consider a filtration problem in a rectangle or a perturbed rectangle
region with an essential nonlinearity and high values of velocity. The conservative averaging
method with quadratic or rational approximation over the rectangle thickness gives us
1D problem instead of the original 2D problem. This 1D solution can be used as an
initial approximation for the original 2D problem. The conservative averaging method is
considered and results of some numerical experiments are presented.

1. THE FORMULATION OF THE PROBLEM
We consider the following differential equation inside the domain  C R2:
—div(Fy (x,u)I - gradu) = —divF>(x,u), (1.1)

where x = (z,y)” and I is the unitary matrix. Functions Fy (x,u) and F»(x, u)

can be expressed in the following form:

3(x
R = 078 10w, (12)

7(x) "

F2(X>u) = Ckfl(X)fQ(X,u)fg(X), (13)
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where ©, a € R. The functions f;, ¢ = 1,2, 3 are given by

3

_J & z < 40 or x > 60,

fl(x)—{ "8 23518 40<z <60, (1.4)
1 1

u + 10 < 07
folx,u) ={ 10+t (=wriem=n)? | 10 u(x) (1.5)

1, u(x) >0,

[ (1000,0)7, z < 40 or = > 60,
fs(x) = { (1000, 10z — 500)7, 40 < z < 60. (1.6)

Let us add the following boundary conditions to the differential equation

u(x) = —2000,Vx € I'y, (1.7a)
n - (F1(x,u)I-grad u) =0,Vx € T's, (1.7b)
n - (F1(x,u)l - grad u) =n - (afi(x)f2(x,u) f3(x)), Vx € [, (1.7¢)

where n is the outer normal vector and

Iy = E’ I = C_—B (1.8)
I's =ABUGFUDCUDEF. ’
Thus we have the differential equation (1.1) with the boundary conditions
(1.7a, 1.7b, 1.7¢). Now let us describe the domain Q. Firstly, we assume Q to
be the rectangle (see Fig.1):

For each the point we have the following coordinates:

A(0,0), B(100,0), C(100,1), D(60,1), E(50,1), F(40,1), G(0,1).

The equation (1.1) describes the dehydration of the porous material contain-
ing water and air during the technological process. The process is considered
to be stationary. It is described by a non-linear diffusion-convection equa-
tion. The parameter a describes the velocity of the porous material trough a
calendar, and the parameter © describes the influence of diffusion.

2. THE AVERAGING OF THE DIFFERENTIAL EQUATION
First, we rewrite the differential equation (1.1) in the form:

8 du, 9 du,  OF(x,u) | 0Py (x,u)
5 (Flx 0 ) + - (Rlou)gh) = TR0 R0 SR (o)
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Figure 1. The rectangular domain §2.

where F, and Fy, are the components of the vectorial function F5. Then we
integrate the differential equation (2.1) in the direction of the y-coordinate:

H. 5 Ou 3] Oou
/0 [O_x(pl(x,u)a_x)+a—y(F1(x,u)6—y)}dy= (2.2)

H r 9F, (x,u) OF»y(x,u)
/0 [ ox + oy ]dy

and introduce the function v(z) in the form

H
o) = / u(z, y)dy, (2.3)

where H is the thickness of 2 in the y-direction. In case of rectangle, we have
H =1 (see Fig.1). Applying the function v(x) to the differential equation
(2.2) we obtain:

0 v ou Ou
Ho(Fi(x,v)5-) + Fl(x,v)(a—y|y:H - a_y|y:0)

OF5,(x,v OF5,(x,v
- 2656 ) 4 2?3(1} )(u|y:H—u|y:0). (2.4)

Here we assume that Fj(x,u) ~ Fi(x,v) and Fa(x,u) ~ F»(x,v). Let us
transform the equation (2.4) using boundary conditions (1.7):

0 ov L OF(x,v) | OFy(x,v)
H(?_x(Fl (x, v)%) +2pF (x,v) = H o + 5

(Uly:H - u|y=0):
(2.5)
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du — du — _
where a_y|y=H = , (-)_y|y=0 = —p and ¢ = F*. Now we assume that the

function u(z,y) is dependent on the y-coordinate as a parabolic function:

H H\?2
u(e,y) = a(@) +b(a) (y— 5 ) +e@) (v - 5) - (2.6)
Thus we can rewrite the equation (2.5):
0 v 0P (x,v) | O0Fy(x,v)
H£(F1 (X’U)a_w) +2pF(x,v) = H 5 + % b(z). (2.7)

In order to obtain an analytical expression for the function u(x,y), the coef-
ficients a(z), b(x) and ¢(x) have to be found. From the boundary condition
(1.7¢) we obtain

g—’;|y:0 =b(z) — He(z) = —p.

It means that b(z) = 0 and ¢(z) = “’gf) and the equation (2.7) can be written
in the following form:

B2 (B (%, 0)2Y) + 20 (x,v) = Hangi(;"m.

Oz Oz (2.9)

Thus we obtained the ordinary differential equation (2.9) with the boundary
conditions (1.7a, 1.7b). Let us put (2.6) into (2.3) to find the coefficient a(zx),

thus having a(z) = v(z) — %. Finally, we can write the expression for the
function u(x,y):
— @ - 2L 2y - )
u(z,y) = v(x) o tglW—3 (2.10)

The function u(z,y) can be used as an approximation for the solution of
differential equation (1.1).

Now we consider the case when the domain has the shape shown in Fig.2.
Let us denote it ;. In this case the thickness of the domain in the y-direction
depend on the x-coordinate, H = H(x) (see Fig. 2). The geometry of this
domain may make the averaging process for the equation (1.1) difficult because
all the derivatives on the boundary are given in the direction of the outer
normal vector. Though instead of g—g we may take g_Z’ because the cosine of
the angle between y-axis and the normal vector for any z is always nearly 1

ou ~, Ou

(see Fig.3). Hence, we can assume §* = o
Now we can do the averaging for the differential equation (1.1) in similar way
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Figure 2. The perturbed rectangular domain ;, For each point we have the following
coordinates: A(0,0), B(100,0), C(100,1), D(60,1), E(50,0.5), F(40,1), G(0,1).

as earlier. We integrate the equation (2.1) in the y-direction from 0 to H(x).
We also introduce the function v(z) in the form:

v(z) = ﬁ/o u(z,y)dy. (2.11)

Finally, we obtain the following expression for the function u(z,y):

u(z,y) = o(e) - L0 s (- Hw)y? (2.12)

and the following ordinary differential equation for v(z):

H (@) (Fi (6, ) 90 + 2B (x, ) = H(z)

OFs;(x,v)

2.1
ax ? ( 3)

where the function ¢ is the same as in (2.5). The difference between formulae
(2.12), (2.13) and (2.10), (2.9) is only in the value of the thickness in the
y-direction.

0.999 | \
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0996 | (

0995

Figure 3. Cosine of angle between y-axis and normal vector, Vz.
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For each of the considered domains (2 and ;) we did the conservative
averaging of the differential equation (1.1). Now let us solve the ordinary
differential equations (2.9) and (2.13) with the boundary conditions (1.7a,
1.7b). Both of them are discretisized by the monotone finite difference scheme
as in [1]. The discrete problem is solved using the relaxation method with
relaxation parameter 0 < w < 1.

3. NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUA-
TIONS (2.9), (2.13)

During the numerical experiments, the following relations were observed. If
the convection was dominant, i.e. © was not larger than 0.1a, then for the
space step h = 1 the necessary amount of iterations was about 300 (see Fig.4);
for the space step h = 0.25 — around 200. It is visible that the reduction of
the space step four times didn’t change the form of the solution but cardinally
influenced the numerical constant value on the right side (see Fig.5 and Fig.6).

~1000

—-1200

~1400

~1600

~1800

2000 e erreneneesneseai i

Figure 4. Numerical solution, H = const, w = 0.075, h =1, © = 0.1, a =1, k = 400.

The results obtained in the changing thickness of the domain H(x) are
the same by the form, only the maximum value of the peak is changing. It
grows from about -700 to -550 in case of the space step h = 1, and from
-900 to -700 for the step h = 0.25. In the case of large diffusion when ©
is nearly 10a the necessary amount of iterations grows about three times
comparing to the case when ©® = 0.1a. The largest necessary amount of
iterations is needed in the case when both the parameters are equal. Large
diffusion qualitatively changes the solution on the left side of the figure, where
the boundary condition of the 1st kind is given. It is easily explained by the
homogeneous diffusion equation with constant coefficients, which solution in
1D case is a linear function. Though for the boundary condition of the 2nd
kind the solution has to be constant. This situation is visible on the Fig.7.
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Figure 5. The discrepancy in the maximum norm, H = const.
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Figure 6. Numerical solution, H = const, w = 0.075, h = 0.25, © = 0.1, a = 1, k£ = 300.

The changes of discrepancy during the iteration process are non-monotonous,
see Fig.8.

4. THE CONSTRUCTION OF APPROXIMATION FOR 2D
PROBLEM

Let us construct the initial approximation for 2D problem. Renewing the
2D solution with the help of polynomial of 2nd order (see Fig.9), it is visible
that around the principal points x=40 and x=60 solution has big jumps. The
source of this phenomena is clear: in the place where calendar presses the
material, the solution could have a boundary layer which cannot be reasonably
approximated by a polynomial function. To avoid such a problem, let us use
the rational spline, which is defined with the property of the conservative
averaging, for the approximation in one interval (see the earlier publication
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Figure 7. Numerical solution, H = H(x), w = 0.075, h =1, © =100, a =1, k = 300.
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Figure 8. The discrepancy in the maximum norm, H = H(z).

of one of authors [2]). We consider the following expression:

H(z)\ | c(z) y’ (H(z) —y)*
2 ) Tty + )

u(z,y) = a(z) +b(z) (y_ (1 +2p(H(z) —y) = 1+2gy

where p and ¢ are parameters. We apply the function (4.1) to the boundary
conditions (1.7a, 1.7b, 1.7c), thus obtaining

{ Srly=r(e) = b(a) + c(@)[H (z) + H(z)p] = (42)

Fuly—0 = b(z) — c(2)[H(z) + H*(z)q] = —¢



Application of the conservative averaging for the filtration problem 259

-200

-400

-600

-800
~1000
-1200
-1400
~1600
-1800
~2000 =
-2200
-2400
~2600
-2800
-3000

Figure 9. 2D approximation (polynomial function), H = H(zx).

Solving the system (4.2), we can find b(z) and ¢(z). Let us assume that p = gq.
In this case the coefficients b(z) and c¢(z) are

{ zg; _ " (2) : (4.3)

p(z
~ H(z)(14+qH(z))

If we apply the expression (4.1) to the equation (2.11), then we obtain the
coefficient a(z):

v(z)(1+Hq) ¢ In(14+2Hq)(1+4Hq—4H?¢*)+ 6H?¢* + 2¢pHgq

ale) = 1+Hqg 8H2(1+ Hgq)g?

(4.4)

Now we have all the coefficients and we can construct the function (4.1) with-
out any problems for each positive q. The differential equation has the same
form (2.9) or (2.13). It is visible that growing the value of the parameter p=q
we obtain the solution, which from one side has a boundary layer and from
the other side doesn’t have a jump. As the best value of the parameter g we
choose the minimal one when the maximum principle is fulfilled.

5. CONCLUSION

The method of conservative averaging allowed us to move from the 2D problem
to the problem for one ordinary differential equation which can be solved by
a monotone finite difference scheme. Using the approximation by a rational
function we can obtain the approximate solution of the given 2D problem.
Or it can be used as an initial 2D approximation, if we wish to solve more
accurately the problem (1.1) — (1.7¢).
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Figure 10. 2D approximation (rational function), H = H(z), ¢ = 5.
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Figure 11. 2D approximation (rational function), H = H(z), ¢ = 17.
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Filtracijos uZdavinio su dideliais greiciais sprendimas konservatyviu
vidurkinimo metodu

J. Jegorov, A. Buikis

Straipsnyje sprendziamas dvimatis filtracijos uzdavinys. Sritis yra sta¢iakampé arba defor-
muota staiakampé. Nagrinéjamas atvejis, kai skys€io tekéjimo greitis yra didelis ir butina
naudoti netiesinj matematinj modelj. Panaudojant vidurkinimo metoda y koordinatés kryp-
timi sprendinys aproksimuojamas parabole, o lygtis yra vidurkinama. Gautoji vienmaté
difuzijos-konvekcijos lygtis yra sprendziama skaitiskai. Taip sudarytas sprendinys ne visada
yra monotoniSkas, todél nagrinéjamas ir dar vienas artinys, kuris apraSomas racionalia
trupmena. Pateikti skaiiavimo eksperimento rezultatai, gauti sprendziant uzdavinj dviem
atvejais, kai vyrauja konvekcijos procesas arba difuzijos procesas. Algoritmo ir iteracinio
proceso konvergavimas néra iStirtas.



