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ABSTRACT

This article investigates the representation formula for the semiconcave solutions of the
Cauchy problem for Hamilton-Jacobi equation with the convex Hamiltonian and the un-
bounded lower semicontinous initial function. The formula like Hopf’s formula is given by
forming envelope of some fundamental solutions of the equation.

1. INTRODUCTION
In this paper we are concerned with the Cauchy problem

ut + (A(z)ug, uy) =0, (1.1)
u(0,z) = ()

in St ={t € (0,T),z € R™}. We investigate the generalized solutions of (1.1),
(1.2), because the classical solutions exist in general only in some neighbor-
hood of hyperplane {t = 0}. There are two ways to define the generalized
solution. The one of them, when the Hamiltonian is convex, is to investigate
the semiconcave solutions [4], [5], [9]. The other way is to work with the
viscosity solutions of (1.1), (1.2) [2], [3]. The nice property of solutions of
differential equations of first order is that the envelope of family of solutions
is also solution of this equation. The various representation formulas for so-
lutions of Cauchy problem for Hamilton-Jacobi equations are based on this
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property [1], [5], [7], [10]. For the equation
ug + H(ug) =0, (1.3)

when H convex, and ¢ is Lipschitz continuous in R", E. Hopf [7] introduced
the formula for solutions of (1.3), (1.2)

u(t, z) = oin, ©(§) +19(

229, (1.4

where ®(q) = sup ((¢gp) — H(p)) is Legrende transform of H.
pER™

In first section of this work we find a formula like this for the solutions of
(1.1), (1.2), when the matrix A(z) € C>*(R") satisfies

ai |£|2 < (A(.’L')g, f) < az |§|23 ai, a2 > 0; (15)

and the initial function ¢(z) is lower semicontinous and

lim |z~ |o(z)| = 0. (1.6)

|| =00

In second section we give formulas for the solutions of Cauchy problem for
(1.3) and conservation law

ug + H(ug) =0, (1.7)

when z € R and the initial functions are respectively piecewise linear and
piecewise constant.

2. THE REPRESENTATION FORMULA FOR SOLUTIONS OF
(1.1), (1.2) WITH THE UNBOUNDED INITIAL DATA

We give some definition of the generalized solution of (1.1), (1.2) in the sense
of work [9]. First we suppose that the initial function () is Lipschitz con-
tinuous on R™.

DEFINITION 2.1. The Lipschitz continuous function u(t, z) in St = {t € [0, T,

xz € R"} is called the generalized (semiconcave) solution of (1.1), (1.2) if
u(t,z) solves (1.1) a.e. on S, satisfies (1.2), and the inequality

u(t,z +1) — 2u(t,z) + ut,z — 1) < Cy |I”

holds for all points (t,z), (t,z + 1), (t,z —1) € S} = {t € [1,T],|z| <n}.
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For the unbounded, lower semi-continuous initial function we suppose such
definition of generalized solution of (1.1), (1.2).

DEFINITION 2.2. The locally Lipchitz continuous function on St is called the
generalized (semiconcave) solution of (1.1), (1.2) if u(¢, z) solves (1.1) a.e. on
St and satisfies:

Afu(t,z) = u(t,z +1) — 2u(t,z) + u(t,z — 1) < Cy I,

for any (t,x), (t,z +1), (t,x — 1) € S%,

lim |z~ |u(t,z)| =0, (2.1)

|| =00
uniformly with respect t € [0, T],
limu(t, z) = ().

Now we will use the results of work [6]. In this work we investigated the
boundary problem

(A(@)ug,ug) = 1, (2.2)
ullog = ¢. (2.3)
DEFINITION 2.3. The Lipschitz continuous function u(z) in Q is called the

generalized (semiconcave) solution of (2.2), (2.3) if u(z) solves (2.2) a.e. on
), satisfies (2.3) and the inequality

w(x +1) = 2u(z) + u(z —1) < Cs |1?

holds for all points z,z + I,z — € Qj, where Q5 = {z € Q : dist(z,00) >
6,la] < 1},6 > 0.

In the case, when domain 2 is unbounded, we additionally require
lim  wu(z) = +o0.

|z]|—+00
e

Consider the generalized solution 4" (z, &) of (2.2) on R™"\B,(§), B.(§) = {
z € R": |z — £| < r}, satisfying boundary conditions

u’f‘

s.e) =0, (2.4)
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where S.(§) ={ z € R": |z — £| =r}. Fix any £ € R™. Define the function

lim w"(z,£), when |z —&| > rg,Vrg > 0,
r—0

G(z,8) = (2.5)

<70
0, when z =¢.

We concluded in this work that the function G(z,£) is semiconcave solution
of (2.2) on R™\ {{} such that

1 1
\/—a—2|$—§|SG($,f) < \/—a—1|$—f| (2.6)

for every z,£ € R™ and is continous with respect &.
Now we prove the theorem.

Theorem 2.1. Let the matriz A(x) satisfies (1.5) and the initial function
p(z) is lower semicontinuous on R™ and satisfies (1.6). Then there exists the
unique semiconcave solution of (1.1), (1.2) on St which can be represented

by formula
G*(2,8) }
4t ’

u(t, ) = min {cp({) + (2.7)

£ER™

Proof. According to (1.6), (2.6) the minimum exists. Define the point &g

which gives the minimum of I(¢,z,&) = p(§) + %. Fix any point £ € R"™.

We can calculate that I(t,z, ) satisfies (1.1). Let (¢,z) € St. Then % is

bounded on S2. = {t € [L,T],L < |z — £] < n} if 219°ED is hounded when
T n n ]
z =&, || # 0. From (2.6) we deduce

AJG2(6,6) _ GP(E+1,6) —2G*(£,6) +G* (£ —1,)
U Uk

2
<=
ai
Now suppose that ¢(z) is bounded on R™, and we will prove the theorem

in this case. Let |¢(z)| < M, then

u(t,2) = min{I(t, 2,6} = I(t,2,§) <I(t,2,2) < ple) <M. (28)

On the other hand, we have

u(t, ) > min {p(z)} > —M.

Consequently

lu(t,z)| < sup [p(z)|
EER™
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on St. According to Lemma 1, [5] we have that u(t,z) solves (1.1). Now we
will prove that u(¢, z) satisfies initial condition (1.2). From (2.8) we deduce
G2 ((E, 60)

—= < 2M.
4t -

In view of (2.6), in computing the minimum of I(¢, z, ) we need only consider
the set O(t,z) = {§ Nz =€ < SMCLQt}. According to (2.7), (2.8) we see

ecBt P18 Sultoo) < ().

From this inequality we have %iH(l) u(t,z) = p(z), because the semicontinuity
—

of ¢(z) implies

li inf = .

Jimy inf (8 = wl@)
Now we prove the uniqueness of solution representing by formula (2.7). First
we suppose, that ¢ () is Lipschitz on R". We will prove that u(t, z) Lipschitz
on St, too. Because (2.6) implies that G(z,£) is bounded on O(¢,x), then
according to (1.5), (2.2) we see

|Gz (2, ) (2.9)

1
< —
<=

a.e. on Sy, = {t € [£,T],z € R"}, thus u(t, z) is Lipschitz on St,,. Thus it
is sufficient to prove the Lipschitz continuity of u(¢,z) in some neighborhood
of hyperplane {t = 0}. Define

: lz ¢,
. = m =1,2.
wltyn) = min {06 + ZEhy i =1,
From (2.6) we have
ur(t, o) < u(t,z) < us(t, ). (2.10)

Hopf’s formula implies that u;(¢, ) satisfies the equations
2 _
Ui +a;uy =0

and the initial condition (1.2). It is known [9] that the generalized solutions
in the sense of definition 2.1 of this problem exist and are unique. Let

|ui(t1, 1) — us(ta, 22)| < L (|t1 — tao| + |21 — 22|)
for any (t;,z;) € St. Then (2.10) implies

ur(t, 1) — @(22) < u(t, 1) — p(2) < ua(t, 1) — p(z2).
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Consequently
lu(t, 21) = @(wa)| < max[u;(t,21) — @(x2)| < L[] + o1 — 22)-

Thus u(t, ) is generalized solution in the sense of definition 2.1. The theorem
3 [9] implies the unique of such solutions, so, any solution with the bounded
and Lipschitz initial data (1.2) can be represented by formula (2.7). Now we
prove that wu(t,z) corresponding to the bounded lower semicontinuous initial
function ¢(z) is unique. The generalized solution of (1.1), (1.2) in this case
is defined below. B

DEFINITION 2.4. The bounded and Lipschitz continuous on St function is
called the generalized solution of (1.1), (1.2) if u(¢,z) solves (1.1) a.e. on St
and satisfies:

APu(t,z) = u(t,z +1) — 2ut,z) +ult,z —1) < Cy ||,
for any (t,2), (t,z +1), (t,z — 1) € SE,

lim u(t, z) = ¢(z).

t—0

From the estimate (2.9) we obtain the existence of solution of (1.1), (1.2) in
the sense of definition 2.4. Let v(t,z) is any other solution. We will show that
it can be represented by formula (2.7). Notice, that v4(t,z) = v(t + o, ), is
the solution of (1.1), (1.2) with the bounded and Lipschitz initial data v(a, z).

Thus
G*(2,§)
« ta = i ) 1 (-
Vo(t, ) Loin {V(a &+ i
Using (1.5), from the equation (1.1) we have that the sequence {v(a,z)} is
increasing and according to lemma 3 [10] we can go to limit over minimum as
a — 0. Thus u =v.
Suppose now that ¢(z) is unbounded and satisfying (1.6). Let sup |¢(z)| <

|z<n]|

M,. Define

_ | @),z <n,

Let u,(t,x) be a solution of (1.1) defined by formula (2.7) corresponding to
the initial function ¢, (z). Then |u,(t,z)| < M, and u(t,z) = u,(t,x) when
(t,z) € K, = {z : || < n—2y/2a;TM,} . From (1.6) we have that the balls
K, cover up R™. Now we will prove (2.1). According (1.6) we have that for
any small u > 0 there exists ¢, > 0 such that

2
lp(@)| < e+ plal”-
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Then (2.6) implies

G (=, , - ¢
Ju(t, )] = min {¢(§) + E;“; E)} < min {c, + el + |x4aj| }

2
plzl
Cut dpast +1°

Consequently the function u(t,z) is solution of (1.1), (1.2) in the sense of

definition 2.2. The uniqueness of solution in this case immediate follows from
the dependence of solution upon the bounded set of initial data.

3. THE CALCULATION OF SOLUTIONS OF THE PROBLEMS
(1.3), (1.2) AND (1.7), (1.2)

Now we consider the equation (1.3) in S = {t € (0,4+00),z € R"}. Suppose

H(p) € C*(R),
H'(p)>a>0 (3.1)

and ¢(z) is Lipschitz on R™. Let u¢(t,z,§), ¢ > 0, are the generalized solutions
in the sense of definition 2.1 of (1.3) satisfying the initial condition

u(0,2,8) = clz - £].

From Hopf’s formula follows that

t®(2L), E+tH'(—c) <z <&+tH'(c), (3.2)

—c(xz—¢&) —tH'(—c), x <&+ tH'(—¢),
ul(t,z, &) = {
c(x—§& —tH'(c), x <&+ tH'(c).
Let {z1} = {kh}, h > 0, k € Z. Define

pp(z) = min {o(zk) +clz—£|},

up(t,x) = rknelg {o(zp) +u(t,z,2r)} - (3.3)

Theorem 3.1. Let H satisfies (2.9) and p(x) is uniformly Lipschitz on R™
with the Lipschitz constant L. Then the functions uj(t,z), ¢ > L, are the
generalized solutions of (1.3), (1.2) in S with the initial function ¢§(x) and

|uf,(t,2) — u(t, z)| < ch, (3.4)

where u(t, z) is a solution of (1.3), (1.2).
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Proof. In [5] we proved that the solution of Cauchy problem of (1.3), (1.2)
can be represented by formula (3.3) when the initial function is uniformly
Lipschitz on R™. From Theorem 3 [9] we have

[ui (8, 2) = u(t, 2)] < sup | (2) = ()] < ch.

Remark 8.1. According to Theorem 1 [9] we have that minimum in (3.3) for
z—tH'(—c) w+tH'(—c)] nz
R R :

any point (¢,z) can be searched in the finite set |

Remark 8.2. If the initial function (z) is Lipschitz on R™ and piecewise
linear with the breaking points {zj} then the formula (3.3) gives the exact
solution of (1.3), (1.2).

Now we give the formula for the solution u(t,z) of conservation law (1.7)
satisfying initial condition

_ _ | ci, z €[mi,2i11),
w0.0) = vie) = { o FEEnT) (3.5)

T
where |¢;| < ¢ = const. Then the function ¢(z) = [ ¢ (z)dz is Lipschitz con-
0

tinuous on R™ and piecewise linear. According to Remark 3.2 we can give the
solution of (1.3), (1.2) w(t, =) by formula (3.3). Notice, that u(t,z) = w,(t, )
satisfies a.e. equation (1.7).

T
DEFINITION 3.1. The u(t, ) is a general solution of (1.7), (1.2) if [u(t,z)dz
0
is the general solution of (1.3), (1.2) in the sense of definition 2.1.

Now we will construct the solution of (1.7), (3.5). Define the function

_ Ck+Ck_1(SU—.CL'k), .CESJUk,
i (@) _{ ck +c(z — z), T > Tg,

when there are no breaking points to the left,

_ [ ea—clx—azr), <y,
on(2) _{ cr+er(z — ), x>,

when there are no breaking points to the right, and
e —c(x — o), z <z,

or(z) = ¢k +cu(z — z), zp <z < Tpya,
ek + cp(Tprr — xk) +c(x — Tpy1), T > Ty,
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when the breaking point xj is between the other breaking points z;_; and
ZTp+1- Let wg(t,x) be the solution of (1.3), (1.2) corresponding the initial
function g (x). We can calculate using (3.3) that wg(t,z) is given by:

( ¢+ cho1(z— 1) —tH (cp_1),
z <z + tH' (ck—1),

Cr + t(b(m_tmk )7

zp +tH (cp—1) <z <z + tH'(c),

wy (t, )

ek +c(x —xz) —tH'(¢),
x> +tH'(c),

¢k +c(x — ) —tH'(—c),
z <z +tH' (—c),

. Ck +tq)(%)>
wi(t,z) = zp +tH' (—c) <z <z + tH' (cp),
ek + cp(z — z) — tH' (cr),
T 2>z + tHI(ck)a
(¢ — C(-Z' - xk) - tHl(_C)a
z <z + tHI(_C)7

Ck + tq)(z;zk)a
o +tH'(—c) <z < mp + tH' (cx),

wi(t,7) = ) ek + cp(x — x) —tH' (cr),
kA5 &)= xp +tH (cp) < x < zpp1 + tH (cr),
ck + ck(Try1 — zp) + 1R(FFE),
Try1 +tH () <z < zpy1 +tH (),

e+ cp(Tryr — xk) + c(x — zpy1) — tH'(0),
T 2> Tpy1 + tHI(C).

Theorem 3.2. Let H satisfies (3.1). Then the solution of (1.7), (3.5) on S
can be represented by formula

u(t,x) = % kenll(ltr,lz) W (t7 .Z’),

where I(t,z) = [m_”i(_c), m+tf’(c)] NZ, el <ec.
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Apie Hamiltono-Jakobi sprendiniy iSraiskas tam tikroms pradinéms
salygoms

G. Gudynas
Nagrinéjami Ko8i uzdaviniai lygtims

ut + (A(z)uac,uz) =0,

ut + H(ug) =0,

ut + H(u)g =0,
su pradine salyga

u(0,z) = p(x).

Igkiliy hamiltoniany atveju yra uzduotos formulés Ko8i uzdaviniy sprendiniams: pirmosios

lygties atveju, kai ¢(z) yra pusiau tolydi i§ apacios ir

lim e[~ fp(z) = 0;

|z] =00

antrosios lygties atveju pradiné funkcija tolydi Lip§ico prasme ir yra lauzté, treciosios lygties
atveju pradiné funkcija aprézta ir dalimis pastovi.



