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Abstract. A conjugate Lorenz-like system which includes only two quadratic non-
linearities is proposed in this paper. Some basic properties of this system, such as
the distribution of its equilibria and their stabilities, the Lyapunov exponents, the
bifurcations are investigated by some numerical and theoretical analysis. The forming
mechanisms of compound structures of its new chaotic attractors obtained by merg-
ing together two simple attractors after performing one mirror operation are also pre-
sented. Furthermore, some of its other complex dynamical behaviours, which include
the existence of singularly degenerate heteroclinic cycles, the existence of homoclinic
and heteroclinic orbits and the dynamics at infinity, etc, are formulated in detail. In
the meantime, some problems deserving further investigations are presented.
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1 Introduction

There has been an increasing interest in exploiting chaotic systems (such as
the known Chen system [1], Rossler system [16], and Lii systems [13], etc.)
since E.N. Lorenz found the first chaotic attractor [12] in a three-dimensional
autonomous system. In [7], the authors proposed a new three-dimensional
chaotic system [7]

T = a(y - ‘T)7

y=dy— xz, (1.1)

2= —bz+ fa? + gy,

wherea >0, f,g >0, f4+9 >0, b, d € R, and discussed the stability character
of the equilibria, the bifurcations and the existence of homoclinic or heteroclinic
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orbits etc. In 2006, Yang et al. presented a new system called conjugate Lii
system [19] as follows

T = a1z — agy,
Y= —cy+zxz, (1.2)
Z=—bz+ xy,

where a1, as, b, ¢ are positive real parameters, and obtained a conjugate Lii
attractor in system (1.2) when (a1, as, ¢, b) = (20, 20, 36, 3). Kokubu and Rous-
sarie [5] established the existence of a singularly degenerate heteroclinic cycle
in the Lorenz system and some of its other dynamical consequences. For the
work about other chaotic systems, see [2,3,4,8,9,10,15,17,18,20].

Generally speaking, it is more interesting that a system possesses fewer
nonlinear terms and lower dimensional number whereas it can generate chaos.
For 3D systems generating chaos, most of them are of type with seven terms,
for example, the Lorenz system, the Chen system etc, mentioned above. Based
on exploiting chaotic systems and the above system (1.2), we introduce in this
paper the following 3D Lorenz-type system with six terms

& =a(zr —y),
Y= —by + xz, (1.3)
3= —cz+ a2,

where a > 0, b, ¢ € R. Obviously, system (1.3) is not topologically equivalent to
system (1.1) or conjugate Lii system. In the sequel we demonstrate that system
(1.3) is a chaotic system in the sense of its having a chaotic attractor, a positive
largest Lyapunov exponent, a continuous broad frequency spectrum, Poincaré
mapping, and the sensitive dependence to initial conditions. See Figure 1.

Initially, by virtue of some numerical simulations, we find some complicate
and interesting singular orbits in system (1.3), such as singularly degenerate
heteroclinic cycles, homoclinic and heteroclinic orbits etc. These properties
with such singular orbits of (1.3), to the best of our knowledge, have not been
found in any known literature. This motivates us to further study theoretically
and numerically its dynamics, mainly for its singular orbits and dynamics at
infinity. Nevertheless, really, we don’t know the physical background of system
(1.3) at least at present.

The rest of the paper is organized as follows. The local behaviours of
system (1.3), such as the distribution of equilibria and their stabilities, the bi-
furcations and the forming mechanism of its compound structure are discussed
in Section 2. In Section 3, we establish the existence of singularly degenerate
heteroclinic cycles, homoclinic and heteroclinic orbits. Its dynamics at infinity
is presented in Section 4. Finally, some conclusions are drawn in Section 5.

2 Local Behaviour of System (1.3)

In this section divided into six subsections, we discuss the local behaviour of
system (1.3).

Math. Model. Anal., 20(2):148-167, 2015.
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Figure 1. (a) Chaotic attractor of system (1.3), (b) its Lyapunov exponents L, = 0.4314,
Ly = —0.000001 and Lz = —3.231398, (c) single-sided amplitude spectrum of |z(t)|, (d) the
Poincaré map of z—y plane for z = 6, (e) time series of z(¢) for (zo,yo,20) = (£3.82e—5,
+6.18e¢—5,0), (f) time series of y(t) for (xo, Yo, 20) = (£3.82e—5, £6.18e—5,0) of system
(1.3) for the parameters (a,b,c) = (3,5,0.8). These figures display that system (1.3) is a
chaotic one.

2.1 Distribution of equilibrium of system (1.3)
By a simple analysis, one may derive the following consequence.

Theorem 1. The distribution of equilibrium of system (1.3) is in detail de-
scribed in Table 1 when the parameters a > 0, b, ¢ are varying in R2.

Table 1. The distribution of equilibrium of system (1.3).

b c distribution of equilibrium

= non-isolated E. = (0,0, z)
be <0 #0 unique Eo = (0,0,0)
be >0 #0 Eo = (0,0,0) and E+ = (£vbe, £Vbe, b)

Remark 1. We may easily see from Table 1 that there is an occurrence of pitch-
fork bifurcation for system (1.3) when a, b, ¢ lie in the space {(a, b, c) € RT xR? |
be = 0}.

2.2 Behaviour of equilibrium FEj

According to the linearized analysis and the center manifold theory, one can
achieve the following result.

Theorem 2. The behaviour of equilibrium Eo of system (1.3) is totally sum-
marized in Table 2 for b, ¢ € R?.
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Table 2. The behaviour of equilibrium Ey of system (1.3).

b c Type of Eg Property of Ep
<0 node a 3D Wp .
<0 = non-hyperbolic a 1D Wy and a 2D W
>0 saddle-node a 1D W7 and a 2D W
<0 non-hyperbolic a 1D W7 and a 2D W
=0 =0 non-hyperbolic a 2D W¢ and a 1D W,
>0 non-hyperbolic a 1D W7 and a 2D W
<0 saddle-node a 1D W7 and a 2D W
>0 = non-hyperbolic a 1D W7 ,a 1D W _ and a 2D Wy,
>0 saddle-node a 2D W7 and a 1D W

Remark 2. For b = 0, the results of equilibrium FEj in Table 2 are obtained by
Center Manifold Theorem.

2.3 Behavior of equilibrium FE,

If ¢ = 0, then system (1.3) has non-isolated equilibria E, = (0,0, ) for any z €

(a—b)+ (a72b)2+4(ab7az) and A3 = 0. Therefore,

R with three eigenvalues A; 2 =
we may easily derive the following results.

Theorem 3. Assume that ¢ = 0, then system (1.3) has non-isolated equilibria
E, = (0,0,z2) for any z € R. Moreover, the local dynamical behaviours of any
one are formulated in Table 3.

Table 3. The property of equilibrium E, of system (1.3).

a—>b z Property of E,
b<z a 2D W7 and a 1D W
<0 b=z a 1D W and a 2D W[
b>z a 1D Wp ,a 1D WS and a 1D Wy
b<z fold-Hopf bifurcation occurs
=0 b=z a 3D W¢
loc
b> 2 alD Wi., a1D W, and a 1D Wi
b<z a 1D W and a 2D W
>0 b=z a 2D W¢ and a 1D Wy,
b>z a 1D Wp ,a1D Wg and a 1D Wy

2.4 Behavior of equilibria F

According to the symmetry of £, and F_ in system (1.3), it is sufficient to
study the behaviour of equilibrium E,. The characteristic equation associated
with the equilibrium F, is

N —(a—b—c)\? — c(a — b)A + 2abc = 0. (2.1)

Math. Model. Anal., 20(2):148-167, 2015.
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Notice that a, b and ¢ belong to the set W = {(a,b,c) € R* x R? | a > 0,
be > 0}. For convenience of discussion in the sequel, we define the sets Wy, Wo
and W3 as follows:

Wi ={(a,b,c) eW:b>0, ¢>0, a>b},
Wy ={(a,b,c) eW:b>0, ¢>0, a<b},
W3 = {(a,b,c) e W:b<0, c<O0}.

Obviously, W = W; UW, UWs3. Further define the subsets Wa1, Was, Was, Woy
of Wy as

—b)? —2ab
ng{(a,b,C)EWQIC<(a)a},

a—b
— b2 —
WQQ{(a,b,c)EWQ:CWACO},

—b)? — 2ab
ng—{(a,b,c)€W2:0>(aa)_ba>0},

—b)2 —2ab
W24:{(a7b,C)EWQZ(aa)_ba<0}.

By applying the Routh-Hurwitz criterion and some analytical computations,
it is easy to get the following results.

Theorem 4. The equilibrium Ey of system (1.3) is unstable for (a,b,c) €
W1 U Way UWs whereas asymptotically stable for (a,b,c) € Was U Way.

2.5 Hopf bifurcation of equilibria F.

From the above Theorem 4, we can see that there will be an occurrence of
bifurcation for (a,b,c¢) € Way. Then, what kind of bifurcation is it? How about
its stability? In this subsection, we will answer these questions. Firstly, we
introduce the following lemmas which will be significant for Theorem 5.

Lemma 1. When (a,b,c) € Way and choose the parameter ¢ as a bifurcation
parameter, system (1.3) undergoes a Pioncaré—Andronov—Hopf bifurcation bi-
furcation (or simply a Hopf bifurcation) at E.

Proof. For (a,b,c) € Waa, it follows that Eq. (2.1) has one negative real root

AL = % and a pair of conjugate purely imaginary roots Ay 3 = +wpi with
wo = y/2ab— (a —b)2. Taking into account that Re(A2) = 0 at ¢ = ¢g, we
obtains
dRe(\2) L [2ab — (a — b)?](a — b)? <0
de |,  2[2ab—(a—0b)?](a—b)?+ 8ab? ’

which means for (a, b, c¢) € Wag, the transversal condition always holds. Also,
Re(M) = A1 < 0. Therefore, all conditions for Hopf bifurcation [6] to occur
are fulfilled. Consequently, a Hopf bifurcation happens at E. .
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The proof for this lemma is then finished. O

Next, we will study the stability of the periodic orbit bifurcated from F.
for the parameters in Was by using the Projection Method in [6]. The following
proposition may be derived.

Lemma 2. For (a,b,c) € Waa, the first Lyapunov coefficient of system (1.3)
at By s given by

a?(a — b)?[(a — b)? — 2ab] Ny
bD1 Do ’

ll(a,b) = — (22)

where

Ny = [3(a —b)* + ab] [(a — b)* — 2ab] + a®b?,
Dy = (a—b)?[(a — b)® — 2ab] — 4a®b* < 0,
Dy = (a—b)*[(a — b)* — 2ab] — a®b* < 0.

Proof. When (a,b,c) € Wag, ¢ = ¢g, and Ey = (v/bco, Vbco,b). Take the
change of the variables ©1 = x — v/bcy, 22 =y — +/beg and x3 = z — b, which
transforms E; to Ey and system (1.3) into

1 = a(x1 — x2),
Zo = bxy — bray + /beozs + 2123,

T3 = 2v/bcoxr1 — cox3 + x%

Denoting v = \/W, we have

a —a 0
A= b -b u
2u 0 —c¢g

It is easy to derive that A has a real eigenvalue \y = a — b — ¢y and a pair of
purely imaginary eigenvalues \g 3 = Fwgi.
With some tedious calculations we show that

—b — wpi —a
1 .
p=— —a and ¢= [ —a+woyl
H _ au __2au
—wot+co wol+co

satisfy Agq = iwoq, ATp = —iwop, (p,q) = So_, Pigi = 1, where

2a2u?

H = —ab+ 2awyi + a* — , .
“ ot —c% + 2cowoi + W3

Math. Model. Anal., 20(2):148-167, 2015.
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Some further computations yield to hiy = (hiy, h3;, ht,), where

pLo_ @ 2%
11 — )
u u(cf +wj)
p2 o @ 2%
11 — )
u  u(cf +wj)
2

B 4a“cy

11 — 2 29

cH + Wy

and hoo = (hdg, h3g, h3y), where

au 2aPuK;

hi, = —
20 K4 + KS )
a?uk 20°uK, K
h%o _ 2 L 2 1,
K, K3
T 2a?(—bwoi + 2w3 + awgi)  4a3u?
20 = -

Ky K3

with K1 = cg + 2woi, Ko = a —2wpi, K3 = (co +wpi) and Ky = —2aw? — au? +
20wE + 2cowi + (4wd + aco — beg)woi.

After further performing some calculations as described in [6], we may derive
the first Lyapunov coefficient of system (1.3) at E, which is just expressed by
(2.2). O

Now define the function f(x) = 3z% — 1723 4+ 272% — 172 + 3 with = €
(0,1). Tt is easy to prove that f/(x) = 1223 — 5122 + 54z — 17 < 0 for

€ (0,1) because 122® — 5122 + 54z — 17 = 0 has a unique real root x =
17+(663+9r)1/3 (663-9VAG)'/ o Therefore, the function f(z) = 32% —
1723 + 271‘ - 17:10 + 3 has a unique real root zg € (0,1) because of f(0) > 0
and f(1) <

Notice that li(a,b) > (=,<)0 & N; > (=,<)0 & the function f(z) =
3zt — 1723 + 2722 — 172+ 3 > (=,<)0 for z € (0,1) & 0 < x < (=, >)7o.

Hence, summarizing the above discussions we finally obtain the main result
of this section as follows.

Theorem 5. System (1.3) undergoes a Pioncaré—Andronov-Hopf bifurcation
at EL for (a,b,¢) € Way. More precisely, for b > a > xob, where xq is the
unique positive root of f(x) = 3x* — 172 + 2722 — 17z + 3 for x € (0,1),
the Hopf bifurcation is stable; for 0 < a < xgb, the Hopf bifurcation is unsta-
ble. Namely, for each ¢ > cg, but close to ¢y, there exists an unstable closed
orbit near the asymptotically stable E; for a = xob, the Hopf bifurcation is
degenerate, and the second or the third or even more higher order Lyapunov
coefficients needs computing to determine the stability of the bifurcated periodic
orbit. Symmetrically, there are the same results at E_ for (a,b,c) € Was.

2.6 Forming mechanism for the structure of new chaotic attractor

In order to reveal the forming mechanism for the structure of this new chaotic
attractor, the controlled system of system (1.3) is proposed, namely, the fol-
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(f) d=04

Figure 2. The phase portraits of system (2.3) when the parameters (a,b,c) = (2,3,0.8)
and d varies and the initial condition (xo, Yo, 20) = (3.82 X 1le—5,6.18 x 1le—5,0). These
figures display the evolution process of chaotic attractors of system (1.3).

lowing system of autonomous differential equations

T = CL(I’ - y)7
y=—by+zz+d, (2.3)
i=—cz+ 22

In this system, d is a parameter of control with its value varying in R.
When the parameter d is changed, the chaos behaviour of system (1.3) can be
effectively controlled. So, it is a controller. Here, we allow the initial values of
the system to be selected as (xg, yo, 20 = (3.82 x 1le—5,6.18 x 1e—5,0). One can
observe different dynamical behavior of system (2.3) at different parameter d.
Different dynamical behaviour can be summarized as follows (see Figure 2).

(a) When |d| > 35, system (1.3) converges to a point.

(b) When 1.5 < |d| < 35, system (1.3) has limit cycles.

(¢) When 0.93 < |d| < 1.5, system (1.3) demonstrates period-doubling
bifurcations.

(d) When 0.63 < |d| < 0.93, system (1.3) demonstrates Multi-Cycle dy-
namics.

(e) When 0.41 < |d| < 0.63, system (1.3) becomes a left (or a right) half-
image attractor.

(f) When d = 0.4, system (1.3) displays a limit cycle, while it is a left
half-image attractor for d = —0.4.

(g) When 0.39 < |d| < 0.40, system (1.3) displays a limit cycle.

(h) When 0.13 < |d| < 0.39, system (1.3) demonstrates partial attractors,
which are bounded.

(i) When |d| < 0.13, system (1.3) exhibits a complete attractor.

In the controller, one can see, when |d| is large enough, chaos attractor
disappears; when |d| is small enough, a complete chaos attractor appears. So,
|d| is an important parameter to control chaos in the nonlinear-system.

This means that, the transverse butterfly attractor reported is also a com-
pound structure obtained by merging together two simple attractors after per-

Math. Model. Anal., 20(2):148-167, 2015.
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forming one mirror operation.

3 Existence of Singular Orbits and Some Conjectures for
System (1.3)

In this section, we study other complicate dynamical behaviours of system
(1.3), mainly for the existence of singular orbits, such as singularly degenerate
heteroclinic cycle, homoclinic and heteroclinic orbit, etc, which play some key
roles in revealing the fascinating nature of system (1.3).

3.1 Singularly degenerate heteroclinic cycle

Recall that a singularly degenerate heteroclinic cycle consists of an invariant
set formed by a line of equilibria together with a heteroclinic orbit connecting
two of the equilibria. Kokubu and Roussarie [5] began to study the existence
of such cycle in Lorenz system by classical method “blow-up of the vector field
at infinity”. In 2009, Messias [15] discovered a set of infinitely many such kind
of cycles from Lorenz system combining analytical and numerical techniques.
Other Lorenz-like systems [2,11,17,20] have such kind of properties, too. In
2012, Liu [10] found that a conjugate Lorenz-type system has infinitely many
such kind of cycles. So, we naturally propose the problem: Does system (1.3)
possess such properties?

Figure 3. Two orbits of system (1.3) for the parameters a = 2, b =3 and ¢ = 0, time
integration: [0,250] and the initial values: (a)
(z0,Y0,20) = (£3.82 x le—5,£6.18 x 1le—5,0), (b)
(z0,Y0,20) = (£3.82 x le—5,46.18 x le—5, —3). These figures show the existence of two
singularly degenerate heteroclinic cycles of system (1.3).

By numerical simulations, it has been found that system (1.3) has this kind
of singular cycles, see Figure 3. Precisely, one has the numerical results as
follows.

Numerical Result 3.1. For ¢ = 0 and 0 < a < b, the 1D unstable manifold
W%(E1) of each normally hyperbolic saddle-like P; = (0,0, 21) (21 € (—00,b))
of system (1.3) tends to one of the normal hyperbolic stable foci-like P, =
(0,0, 2z3) (22 € (b,4+00)) discussed in Theorem 3, forming singularly degenerate
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Figure 4. Singularly degenerate heteroclinic cycles of system (1.3) with (A)
(z0,y0,20) = (£3.82 x le—5,+6.18 x le—5,—7), (B)
(z0,Y0,20) = (£3.82 X 1le—5,+6.18 x 1le—5,—3) and (C)
(z0,Y0,20) = (£3.82 X 1le—5,1+6.18 x 1le—5,1) when (a, b, c) = (3,4,0). These figures
suggest that system (1.3) has infinitely many singularly degenerate heteroclinic cycles.

heteroclinic cycles (see Figure 3-Figure 4). This also implies that system (1.3)
has an infinite set of singularly degenerate heteroclinic cycles, too.

The above results have not been theoretically proved for the existence of
degenerate heteroclinic cycles. Hence, with the similar method used in [5], we
take the linear transformation v = v/az, v = ay/a(z —y), w = az that converts
system (1.3) into the following system

U=,
0 = abu — (b—a)v — uw, (3.1)
W = —cw + u’.

It is easy to see that system (3.1) with ¢ =0 and b > a > 0 (i.e. system
(1.3)) is similar to Shimizu-Morioka system

T =y,
y=Azr —y—zz, (3.2)
5= —cz +a?,

where A > 0 and ¢ = 0, and it is a special case of Lorenz system

T =y,
= Ax — By — xz — 2°, (3.3)
5= —Bz+ 2?

with A, B > 0, 8 =0 on pp.493 of [14] or pp. 521-522 of [5] whose cubic term
23 is removed. According to [5] and [3], there exists a singularly degenerate
heteroclinic cycle in Shimizu-Morioka system and Lorenz system respectively.
By using the similar reasoning in [5] and [3], one sees that system (1.3) has this
property, too. However, up to now, we can not give a rigorous theoretical proof
for the existence of infinitely many singularly degenerate heteroclinic cycles of

system (1.3). So a conjecture is presented as follows.

Math. Model. Anal., 20(2):148-167, 2015.
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CONJECTURE 1. Consider system (1.3) with ¢ = 0. Then, for b > a > 0, system
(1.3) has a set of infinitely many singularly degenerate heteroclinic cycles.

When c passes through zero, we find new chaotic attractors with the singu-
larly degenerate heteroclinic cycles disappearing, for example, see Figure 5.

Figure 5. The phase portrait of system (1.3) for (a,b,c) = (3,4,0.1), time of integration:
[0, 750], and initial conditions: (xo, Yo, 20) = (£3.82 X le—5,£6.18 X 1le—5,0). The figure
suggests the existence of chaotic attractors which are bifurcated from the singularly
degenerate heteroclinic cycles of system (1.3).

3.2 Existence of homoclinic and heteroclinic orbits

In this subsection we study global bifurcations corresponding to the appearance
of homoclinic or heteroclinic orbits connecting hyperbolic equilibria in system
(1.3). Does system (1.3) have such kind of properties? On the one hand, we
consider the existence of homoclinic orbits of system (1.3). When a = 2, b = 3,
¢ = 8.037 (At this time, the parameters a, b and ¢ satisfy b > a > 0 and
0<c< %ﬁ;zab, and FEj is a saddle-node, Fy are saddle-focus according
to Section 2.4.) and (xo, Yo, 20) = (£3.82 X le—5,+6.18 x 1le—>5,0), numerical
simulations show that system (1.3) has two homoclinic orbits to Ey ( refer to
Figure 6).

Whether or not does system (1.3) have other homoclinic orbits such as to
E, or E_7 So far, we can not give theoretical answer. Hence, we propose the
second problem as follows.

CONJECTURE 2. When b > a > 0, 2ab > (a—b)?, and some c; € (0, %ﬁf”b),

system (1.3) has two homoclinic orbits to E or E_.

On the other hand, one studies the existence of heteroclinic orbits of system
(1.3). First of all, after making a careful analysis of system (1.3) in [7] (or the
system (1) in [8]), we find that system (1.1) has two heteroclinic orbits when
its equilibrium Sy is unstable and Sy are local asymptotically stable. (Note:
So and Sy in [7] are corresponding to Ey and E in this paper.)

However, one also finds that Fj is unstable and E1 are asymptotically stable
when (a, b, ¢) € Way. Inspired by this idea, we make some computer simulations
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Figure 6. Two homoclinic orbits of system (1.3) to Eg when a =2, b =3, ¢ = 8.037 and
the different initial values (zo, Yo, 20): (a) (zo0,Y0,20) = (—3.82 X le—5,—6.18 x 1e—5,0),
(b) (z0,¥0,20) = (3.82 X 1le—5,6.18 x le—5,0).

for system (1.3) and discover two heteroclinic orbits of system (1.3) to Ey and
FE respectively. For the numerical results, see Figure 7.

Notice that Fy is unstable at the case (a, b, ¢) € W3 whereas E are asymp-
totically stable in this case. Now set a = 2, b = 3, ¢ = 11.1, 400, which obviously
satisfy (a, b, c) € Was, and (zo, yo, z0) = (£3.82 x 1le—5,£6.18 x 1le—5,0). Nu-
merical simulations illustrate that system (1.3) also has heteroclinic orbits to
Ey and E respectively (see Figure 8). Whether or not does it have other het-
eroclinic orbits such as the ones joining the equilibria £ and E_?7 So far, we
fail to answer this question. Hence, we present the following third conjecture.

CONJECTURE 3. Assume (a,b,c) € Was or Way, then system (1.3) has two
heteroclinic orbits joining Ey and EL respectively.

3.3 Numerical results of other singular orbits

Set the initial values (x,yo, z0) = (3.82 x 1le—5,6.18 x 1le—5,0) and the pa-
rameters a = 2, b = 3 whereas c¢ varies in R. We discover that the portraits of
system (1.3) illustrate diverse interesting and fascinating phenomena, refer to
Figure 9. The different dynamical behaviour of system (1.3) can be numerically
observed as follows.

(a) When 0.76 < ¢ < 0.812, system (1.3) demonstrates period-doubling
bifurcations.

(b) When 0.812 < ¢ < 8.036, system (1.3) displays a limit cycle encircling
FE4 and Ejy.

(c) When 8.05 < ¢ < 11, system (1.3) shows a limit cycle encircling F
or F_.

4 Dynamical Behaviour of System (1.3) at Infinity

In this section, we shall make an analysis of the flow of system (1.3) near and
at infinity.

Math. Model. Anal., 20(2):148-167, 2015.
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(d)ec=3

Figure 7. Two orbits of system (1.3) for the parameters (a,b) = (1,6) and ¢ varies
satisfying ¢ > 0, the initial conditions (xo, yo, 2z0) = (£3.82 X le—5,+6.18 x 1le—5,0) and
time integration: [0, 750]. These figures display the existence of two heteroclinic orbits of

system (1.3) joining Eo and E+ respectively.

4.1 Statement of main results

The main results in this subsection are summarized in the following theorems.

Theorem 6. For (a,b,c) € RT x R?, the phase portrait of system (1.3) on the
sphere at infinity is as illustrated in Figure 10, and there exists only a circle of
equilibria containing the endpoints of the y- and z-axis.

Since ¢ = 0 and (a,b) € RT x R, the dynamics of system (1.3) has been
discussed in Section 3, we consider the case for ¢ # 0 in the next theorem.

Theorem 7. If ¢ # 0, then system (1.3) has two infinite heteroclinic orbits,
one of which consists of the origin Fy, the positive portion of the z-axis and of
one equilibrium on the sphere at infinity (the endpoint of the positive z-axis);
the other consists of Ey, the negative part of the z-axis and of one equilibrium
on the sphere at infinity (the endpoint of the negative z-axis). Moreover, the
origin is asymptotically stable for ¢ > 0 along the z-axis while unstable for
¢ <0 (see Figure 11).

The section is organized as follows: in Subsection 4.2, we study the dy-
namics of system (1.3) in a neighbourhood of and on the sphere at infinity
and consequently to prove Theorem 6 by using Poincaré compactification [15].
Based on the knowledge of the dynamical behaviour near and at infinity, we
shall prove Theorem 7 in Subsection 4.3.

4.2 Dynamical behaviour of system (1.3) near and at infinity

In this subsection we make an analysis of the flow of system (1.3) near and at
infinity. In order to do so, in the following four subsections, we shall analyze



Singular Orbits and Dynamics at Infinity of a Conjugate Lorenz-Like 161

5
-20 -10 -100 -50

y X y
(a) e=11.1 (b) ¢ =400

Figure 8. Two heteroclinic orbits of system (1.3) when
(z0,Y0,20) = (£3.82 X 1le—5,+6.18 x 1le—5,0), (a,b) = (2, 3), different values of ¢ and time
of integration: [0, 750].

(a) c=0.78

Figure 9. The evolutions of dynamics of system (1.3) when the parameters a = 2,b =3
and c¢ varies and the initial value (zo,yo0, 20) = (—3.82 X le—5, —6.18 X 1le—5,0): (a)
period-doubling bifurcations, (b) a limit cycle encircling E+, (c) a limit cycle encircling F
or E_.

the Poincaré compactification of system (1.3) in the local charts U; and V;,
i=1,2,3.
4.2.1 In the local charts U; and V;

The expression of the Poincaré compactification p(X) of system (1.3) in the
local chart U; is given by

2'1 = —(CL + b>21Z3 + G/Z%ZB + 22,
Zy = —(a+ ¢)2az3 + aziz023 + 1, (4.1)
2 2

Z3 = az1z3 — G23.
Taking z3 = 0 (which corresponds to the points on the sphere S? at infinity),
system (4.1) is reduced to
71 = 29,
e (4.2)
Z9 = 1.
Obviously, system (4.2) has no equilibria. Furthermore, it has a first integral

1
H1 = Z1 — 525, (43)
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Figure 10. Phase portrait of system (1.3) at infinity.

(a) >0 (b)c=0 () e<0

Figure 11. Infinite heteroclinic orbits of system (1.3) for ¢ > 0 (left) and ¢ < 0 (right)
when b > 0. For ¢ = 0 system (1.3) has singularly degenerate heteroclinic cycles (center).
The boundary of the disks corresponds to the points at infinity in the plane y—z, see
Figure 10.

which is shown in Figure 12.

Figure 12. The phase portrait of the first integral H; = 2z — %zg

The flow in the local chart V; is the same as the flow in the local chart U;
reversing the time, because the compactified vector field p(X) in V; coincides
with the vector field p(X) in U; multiplied by —1.
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4.2.2 In the local charts U; and V,

The expression of the Poincaré compactification p(X) of system (1.3) in the
local chart Us is as follows

Z1 = (a+b)z123 — azg — 2320,
Zy = (b—C)zp23 — 2125 + 22, (4.4)

2.3 = bzg — Z129%3.

For z3 = 0, system (4.4) turns to

{Z.l = —Z%ZQ, (4 5)

2 2
Z9g = —z125 + 21-

It is easy to see that system (4.4) has a line I, of equilibria given by the zo-

axis, and its linearized part at these equilibria has three null eigenvalues. The
2
system (4.5) has a first integral Hy = % — 2. By using the first integral one

z% z1 "
can completely describe the dynamics at infinity of system (1.3), see Figure 13.

2
Figure 13. The phase portrait of the first integral Hy = i—% - =.
1

The flow in the local chart V5 is the same as the flow in the local chart Us
reversing the time, because the compactified vector field p(X) in V5 coincides
with the vector field p(X) in Us multiplied by —1. Hence the phase portrait
on the chart V5 is obtained by reversing appropriately the time direction.

4.2.3 In the local charts U; and V3

The expression of the Poincaré compactification p(X) of system (1.3) in the
local chart Us has the form

71 = (a+c)z123 — azpzs — 25,
Zy = (c—b)zozg — 2320 + 21, (4.6)

43 = c22 — 2223.
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For z3 = 0, system (4.6) reads
. 3
21 = —Zq,
(-2 .
Z9g = —z1%22 + 21.

Analogous to system (4.4), system (4.6) has z5- axib as a line of equilibria I,,
too. The system (4.7) has a first integral Hs = The first integral

_ |21| 2\2 1

may completely describe the dynamics at infinity of system (1.3), see Figure 14.

J

Figure 14. The phase portrait of the first integral Hz = % — ﬁ

Again as in the case in Subsection 4.2.2 the flow in the local chart V3 is the
same as the flow in the local chart Us by reversing the time.

Now we study system (4.6) in a neighbourhood of the infinite sphere on the
chart Us by considering z3 small, since we are interested in the behaviour of
the solutions which tends to infinity on the z-axis.

The z3-axis is invariant w.r.t. the flow of system (4.6), since for z; = 20 =0
system (4.6) reduces to

Z1 =0,
Z9 =0, (4.8)
73 = cz3.

Hence the origin Iy is asymptotically stable (resp. unstable) if ¢ < 0 (resp.
¢ > 0) along z-axis. Furthermore, if ¢ = 0, system (4.6) has a line of equilib-
ria I, = (0,0, z3) coinciding with the z3-axis with corresponding eigenvalues

A2 G L VA (G ZS)QHW —dazs and A3 = 0. Notice that z3 = 0 corre-

s

sponds to those pomts at infinity Whereas z3 sufficiently close to 0 corresponds
to those points near infinity. Hence, one has the proposition as follows.

Proposition 1. Assume that ¢ = 0 and z3 is sufficiently close to 0. Then the
dynamical behaviour of I, in the local chart Us is illustrated in Table 4.
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Table 4. The behaviour of I3 in the local chart Us.

a—2b Property of I3

<0 a 2D W, and a 1D W,

=0 fold-Hopf bifurcation probably occurs
>0 alD W, alD W, and a 1D Wj,

The flow in the local chart V3 is the same as the flow in the local chart Us
reversing the time. So the same type of analysis as made above, taking into
account that near the infinity in the local chart V3 we have z3 sufficiently close
to 0, allows us to prove the following preposition.

Proposition 2. The equilibrium points (0,0, z3) of system (4.6) with reversed
time (that is in the local chart V3) are saddles normally hyperbolic to z3-axis,
that is the linear part of the system at each equilibrium (0,0, z3) has two real
etgenvalues with opposite signs and the corresponding one-dimensional stable
and unstable manifolds normal to the z3-axis.

4.2.4 Dynamics of system (1.3) on the sphere at infinity

Putting together the analysis formulated in the previous subsections one has
a global picture of the dynamical behaviour of system (1.3) on the sphere at
infinity. It has one circle of equilibria containing the endpoints of the y- and
z-axis (see Figure 10). These are just what Theorem 6 says.

We observe that the description of the complete phase portrait of system
(1.3) on the sphere at infinity is possible because of the invariance of this set
under the flow of the compactified system.

4.3 Infinite heteroclinic orbit

For ¢ # 0 small, b € R, the complex dynamical behaviour of the origin Fj
has been discussed in Section 2. The Jacobian matrix at this point has the
eigenvalues A\ = a, Ay = —b and A3 = —c with the corresponding eigenvectors
v1 = (1,0,0), v1 = (0,1,0) and vz = (0,0, 1).

Hence, for ¢ < 0, the instability index of Ej is at least 1. It is easy to check
that the z-axis is invariant under the flow of system (1.3), and it follows from
the calculations above that the origin is unstable along this axis. Moreover,
the equilibria at the endpoints of the z-axis on the sphere at infinity, which
coincide with the origin I in the local charts Us and V3, are asymptotically
stable (see, Subsection 4.2.3). Thus system (1.3) has two infinite heteroclinic
orbits as in [10,15], one of them consisting of the origin, the positive portion
of the z-axis and of one equilibrium on the sphere at infinity (the endpoint of
the positive z-axis); the other one consists of the origin, the negative part of
the z-axis and of the endpoint of the negative z-axis. Particularly, one of them
is shown in Figure 11(a) when b > 0.

For ¢ > 0, the stability index of the saddle is at least 1, and the origin Ej
is asymptotically stable along the z-axis but the endpoints of this axis on the
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sphere at infinity are unstable (see, Subsection 4.2.3). Hence, system (1.3) has
also two infinite heteroclinic orbits on the z-axis as the ones in [10, 15], which
are illustrated in Figure 11(c) when b > 0.

The proof of Theorem 7 is then finished by these discussions.

5 Conclusions

In this paper, we introduce a conjugate Lorenz-like system. First of all, we
discuss its basic local dynamical behaviors including the distribution of equi-
librium points and their stabilities. Some of its other rich dynamical behaviors,
such as the existence of a set of infinitely many degenerate heteroclinic cycles,
the existence of homoclinic and heteroclinic orbits and the dynamics at infin-
ity, etc., which are not studied in any known literature, are formulated in this
paper.

By numerical simulations, we find that there exist chaotic attractors that are
bifurcated from singularly degenerate heteroclinic cycles, homoclinic orbits to
FEjy, heteroclinic orbits joining Ey and E4 when its parameters do not satisfy the
conditions in [5,7]. It is worthy to further theoretically explore the mechanism
for the occurrence of such chaotic attractors in the future.
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