MATHEMATICAL MODELLING AND ANALYSIS
VoLUuME 6 NUMBER 2, 2001, PAGES 231-240
© 2001 Technika

ON ONE EFFECTIVE DIFFERENCE
SCHEME FOR THE
CONVECTION-DIFFUSION PROBLEM

G. GROMYKO

Institute of Mathematics of National Academy of Sciences of Belarus
Surganov 11, 220072, Minsk, Belarus

E-mail: grom@im.bas-net.by

Received October 4, 2001; revised October 30, 2001

ABSTRACT

The given paper is devoted to build-up of the special economic difference schemes for non-
stationary one and two-dimensional problems of a convection - diffusion permitting to take
into account convective and diffusion terms from the uniform point of view. On the basis
of a multicomponent schemes build-up procedure, bound up with region decomposition of
the cells of mesh, the economic multicomponent iterative algorithm is constructed. A se-
ries of numerical calculations on some test problems solution including Burgers problem is
reduced, and the comparison with known, most spread schemes is proceeded.

1. INTRODUCTION

The mathematical models of problems describing viscous fluid flows, in partic-
ular modelling of hydrodynamics and heat-mass transfer processes, represent
systems of nonlinear differential partial equations of the second order and
contain terms reflecting a fluid diffusion and its transfer in a movable. It
is possible to consider the equation of a convection - diffusion as the basic
equation for such problems. The substance diffusion is described by terms of
the second order, and the convection is described by terms of the first order.
Though a convection is featured only by terms of the first order, the major
attention is given to its approximation. The detailed analysis of the numer-
ous difference schemes for hydrodynamics problems solution is surveyed in
[1-3]. In [4] the review of convection - diffusion stationary and non-stationary
problems solution difference methods is given, stability estimation is obtained
and the sufficient conditions of schemes monotonicity are proved. However
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the problem of the best difference scheme solution is still an important task.
The given paper is devoted to build-up of the special economic difference
schemes permitting to take into account convection and diffusion terms from
the uniform point of view. One and two-dimensional non-stationary problems
of a convection - diffusion are considered, which enable us to take into ac-
count the basic singularities of a problem and are the basis for more complex
hydrodynamic equations, heat-mass transfer equations etc.

2. PROBLEM STATEMENT. THE DIFFERENCE SCHEMES.
REALIZATION ALGORITHMS

2.1. The one-dimensional nonlinear non-stationary problem of a con-
vection - diffusion

We shall consider the nonlinear non-stationary equation of a convection -
diffusion

ou 0 0, Ou
5 T e W) = 5o(uz )+ f(@t), p>0, t>0, €, (1)

w(@,0) =¢(z), € u0,t)=uy, uw(l,t)=ugr, t>0. (2)

The domain Q@ = {0 <z < L, 0 <t < T} is covered by the rectangular
uniform difference grid Qp, = Qp x U, Qp = Qp + 0, O = {z; = ih,i =
1,...N —1,Nh = L}, here 09y, are boundary points, and we introduce the
time grid: Q, = {t; =j7,j =0,1...}.

The general flux consists from convection and diffusion P = 9 (u)u—pudu/0x
specified on boundary z;¢.5 of the control volumes w; = [%; 0.5, Zit0.5] and
Wit+1 = [Tito0.5,ZTit1.5]- It is necessarily to require realization of equality con-
dition of fluxes P;} o5 = P 5. This requirement gives us the additional in-
formation on behaviour of a solution inside control volume. Since unknowns
are defined a grid, and it is not known about behaviour of a solution between
nodal points, it is possible, for example to suppose, that the solution between
nodal points is stationary and satisfies to the equation dP/dz = 0.

Thus, for exact definition of a flux on the boundary of interior control
volumes it is necessary to solve additionally the problem inside a cell [3]:

d(yp(u*)u* — pdu” /dz)/dz =0, = € Qi = (zi,Tit1),

with boundary conditions u*|;; = w;, u*|z; 1, = Ui41-
Assuming, that inside each interval [z;,2;41] ¥ and p are constant and are
defined by the average value, the solution of the auxiliary problem has a form

exp(Yiro.5(T — i)/ tivos) — 1
exp(Yito.5h/pivos) — 1

u*(z) = ui + (wip1 — u;) ,
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where 1;10.5 = 0.5(¥; 11 + ;) and similar definition is applied for p;0.5-
Integrating equation (1) on control volume 2, X w;, we shall receive the
equation

yi + (Pito5 — Pi—os)/h = f.

In [1, 2, 4] the solution at an intermediate point was defined by linear inter-
polation on the nearest next points. Using u*(z) as a profile of a solution and
its derivative for definition in half-integer points w;, we come to the difference
scheme with nonlinear coefficients

yi + (Wy05Y)z = (firos Yz)z +frny =€, (3)
where fito5 = pyo.5F(Ref®?), Ref®® = hipyo.5/p40.5.)
In [6] similar scheme of exponential adjustment with its proper parameter
for stationary problem of boundary layer is received.
As the grid Reynolds number depends on a solution, for finding a solution
of the difference scheme (3) we shall consider the following iterative process:

s+1 s s+1 s s+1
Y+ (¢+0.5 Yy )i = (p‘+0.5 Y E)E + fh y TE Qh: (4)
0
where s is the number of iteration, s =0,1..., Y=4g.

+1
From (4) we have a linear difference equation for definition E

41 +1 +1 o
AU —C Ui+ By i1 =—-F, i=1,N-1, (5)

s s s
with coefficients Az = ThiQ/ii_()ﬁFA(Rehi_o_g,), B; = Th72ll/z'+0_5FB (Rehi+0_5),

s s
Fi=9+7fi,Ci =14 A; + B; + 7(¥;,0.5 — ¥i_o.5)/h, where the functions
F4(Re) and Fp(Re) are determined by formula

Fp = Re/(exp(Re) — 1), Fa = (Re exp(Re))/(exp(Re) — 1). (6)

They are positive and have three limiting values, thus the limiting values foo
are indefinitely major values of the same order, as Re at Re — £o0o. The
scheme is monotone, as the requirements of a monotonicity are fulfilled [4]:

A,’>O, B; >0, D;=C;—A;—B; >0

without any restrictions on steps. A defect of the scheme is multiple calcu-
lation of exponential curves. It is not acceptable to the majority of practi-
cal problems because of economic reasons. For small Re numbers functions
F4(Re), Fg(Re) can be approximated by a Taylor series.

Tt is obvious that choosing interpolants well enough approximating F4(Re),
Fgp(Re), and taking into account their limiting values, it is possible to con-
struct the various difference schemes.
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Let’s approximate F4(Re), Fg(Re) by piecewise linear functions on a seg-
ment [Rpin, Rmaz]- We shall choose boundary Ryin, Rmaee so that the de-
viation of function values Fa(Re), Fg(Re) in these points from the relevant
limiting values was insignificantly. The segment [Rmin, Rmax] is divided into
segments [R;, R;11] with a step hg so that a point of a partition Ry is equal,
as it corresponds to a limiting value Re = 0. In each of these intervals func-
tion Fp(Re) is approximated by a symmetric function of known precise values.
Thus we present approximating function as

0 for v > Rz,
FB(U) = FB(Rj) + (FB(R]'_H) - FB(R]')) (U;fj) for Rj <v< Rj+1,
—v for v < Rumin.-

(7)
The number of segment partitions depends on an accuracy of approximated
function. If Rpin = —2, Rmae = 2 and on all segment Fg (Re) =1-0.5Re
we have the combined scheme [3].

Let’s note, that a replacement of precise Fig by approximate function Fg
introduces in equation (3) the error O(er(hr)yz.), which is the analog of
some additional dissipation. It is not difficult to carry out the analysis of
dispersion and diffusion properties with the help of differential approximation
method|[7].

Similarly approximate function F4(Re) for F4(Re) can be defined. Differ-
ence of this problem is nonlinearity of arguments of functions F4(Re), Fg(Re),
stipulated by nonlinearity of coefficients v, u.

2.1.1. Modifications
Let’s stop on a more economic numerical algorithm, which will use field inte-
gration decomposition in a combination with a multicomponent method [8].
As subregions of a partition the cells of a grid € are considered. In-
dexing will be carried out on the left-hand lower knot of a cell. Unknowns
for one rectangular cell w; = (x;,z;41) will be solution values in its left-
hand knots. By solution in a cell we shall understand a grid vector function
Y = Y, V)T, where Y;'") and Y are values of a solution in grid knots
Zi, Tiy1, respectively, i.e Yz.(l) =Y (z;) and Yz.(2) =Y (ziy1)-
Let’s consider operators

D v =h""(fit05vz — ¥405v), D v=—h""(fi_o5vs — Y_0.50-1).
The difference scheme (3) is given by
ye=DTy+D y+ fn, (8)
its component-wise form is given by

YW= Df YV + Dy V) + fus,
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2 1 _ (2
Yz'( )E =Dj,, Y;gri + D; Yi( = Thiv1- 9)
If all components corresponding to the same knot of a grid are equal, equa-
tions (8) and (9) coincide. The system of equations (9) is non-linear concerning

components for one cell. For component-wise realization we shall consider the
following iterative process:

st st s s— 0 5(2)
Y t=D; Y; +Dio1 Y1+ fnis

s+1(2) s+ s(1) s4+17 s+1(2)

Yi i=Dip1Yiu+ D Y + fritr, (10)
s=20,1,..., 4 =1,N—1. As a zero approximation for components of a
o) 0(2)
solution we take Y, =Y., Y, =Y.

Equations (10) in a cell w; give a system of linear equations

AY =B (11)
with coefficients:
5 s +0.5 a8 s +0.5
a1 =1+7h™“WiyosFa(Re, ), a2 =—Th “PitosFp(Rey, ),
ys s +0.5 ,s s +0.5
as1 = —7h “Mipo5Fa(Re, ), asx =1+7h “lios5Fp(Re, ),
s(2) s+ s(1)

o
b1 =9 —7TD;_ 1 Y 1 +7fni, b2=0ix1 +7D;y Vg +7fhit1.

The functions Fg, F)a are defined by (6) or (7). The matrix A has a diagonal
dominance and det A = aj1a22 — az1a12 # 0. The solution is defined in a
unique fashion and looks like

V;M = (a11by — asiby)/ det A , Y;® = (azby — a1zbs)/det A . (12)

The components of a solution are calculated on all interior cells w;, i =
1, N — 1. On boundary cells, taking into account boundary conditions (2),
we determine one component of the solution. Thus, the components of the
solution are determined sequentially for each cell. The algorithm is iterated
till reaching of some criterion.

As a final solution in knots of a grid z; we shall accept the average values
of the solution components corresponding to the same knot: Y; = 0.5(Yi(1) +
Yioi®@) fori=1,N —1.

2.2. Two-dimensional case

The constructed schemes are extended to two-dimensional case. In two-
dimensional rectangular field Q = {0 < z, < L4, a = 1,2} we shall consider
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the nonlinear non-stationary equation of a convection - diffusion

i&’v (Valw Zax (“aax) Zfaxt (13)

pa >0, t>0, x = (z1,72) € Q with boundary conditions of Dirichlet
(x,t) = ®(x), x €990, t>0,and initial conditions u(x,0) = p(x), x €

{:DIg

Let’s define uniform on each direction z, spatial grid Q, = Qp + 09y,
Qpn = {(i1h1,i2h2), ia = 0, Ny, Noho = Lo, a = 1,2}, 09y, is a set of the
boundary knots, and Q, = {t; = jr, j =0,1...} is temporal grid.

Integrating (13) on control volume € x Q, and using the technique de-
scribed above, we obtain

2 2 2
Vit Y (Ga059)z. = I (flat05 Yo )za + D fras TED,  (14)
a=1 a=1

a=1

where

Pra,40.5 = fla,+0.5Re; a+ 5) Ma,+o.5FB(R€2“a+O'5),
Rejt0% = a¢a,+0.5/ﬂa,+o.5-
For linearization of (14) we shell use the method of simple iterations:

s+1 s+1 s+1 s+1
Aivis Y i1—1i0 — Ciriy Y ivio + Bivin Y ii41io + Eiviy Y ivio—1+ (15)

s+1
+Gi1i2 Y irig+1 = _Fi1i27
where

s 11 —0.5

Aiyig = Thi? iy 05 FA(Rey,, ),
s ©1+0.5

Biliz = Th /"Ll ,41+0.5 FB(Rehl )5
s i2—0.5

Eiyi, = Thy? i iz—0.5 Fa(Rep, ),
s 1240.5

Giiy = Thy 2 By 005 Fp(Rep, ),
Ci1i2 =1+ Ahlz + +Bz1zz + Enzz + Gi1i2

8
a+os — Yayia—05)
+7 Z az a,l 7
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s ia—0.5 s iat0.5
ia = 1,No—1, a=1,2, the functions F4(Re,_, ) and Fg(Re, ) are
defined according to (6).

The solution of a system (15) together with boundary conditions can be
found by matrix factorization method or one of the economic schemes [4],
e.g., the iterative method of alternate directions. However, the algorithm
obtained with application of a multicomponent method for grid cells is more
preferable.

We shall consider a grid vector function Y;,;, = (V%) v2 {3 y 4T

11227 2112’ 1112 1112
which we shall determine as a solution, where nglll, Y,gi, YZSZZ | Yz(l‘t)z are
components of a solution for a cell (zlzz) in grid knots (x;,, ©i,), (i, Tist1)s
(Tig 15 Tigt+1), (Tiy+1,Ti, ) TEspectively, i.e. Y;(”)2 =Y (z;,,%i,) etc. We shall
carry out cells indexing on the left-hand lower angle of a cell, and inside a
cell for a label of components of a solution - from the left-hand lower angle
clockwise. Unknowns for each rectangular cell (z;,,%;,) will be values of the
solution in its knots, i.e. four components of the solution.

Similarly to Sect. 2.1.1 for each spatial direction we shall define opera-

1/~ _ —1/~

tors DIv = hy ™ (fla,40.5Vz. — Ya,+0.5v) and Dyv = —he ™ (fia,—0.50s, —
v_1,). Taking into account association between ¢a, la, Rep,, operators
are conversed to more convenient aspect DIv = = h;2ut? 5(F’“+0 SVi41 —
an+05 ) _D v = —h 2 705(FZ:B05 an 05?}2&_1)‘

Notmg the dlfference schemes for each knots of a cell w;,;, in new labels,
we derive a system of four (11) equations concerning four unknowns.

F’“io 5 = A(Re’,';;io's), F(i‘:gto's = FB(Re’,'l‘;iM) are defined (6). Due to
the propertles of functions Fy B, Fy 4, o = 1,2, the determinant of matrix
A is distinct from zero. In interior cells of a grid the order of the system is
defined by the number of unknowns in the cell knots, in boundary cells the
order of the system decreases up to two. The solution is determined in unique
way. The algorithm is solved sequentially from one cell to the other.

As each interior knot of a two-dimensional grid belongs simultaneously to
four cells, in this knot there will be also four various components of the solution
of the appropriate adjacent cells. Therefore as a solution in a knot of a grid we
shall use average of appropriate components. Such procedure will be carried
out for all interior cells and for each time layer.

Thus the difference schemes is constructed.The basic parameter of this
scheme is a grid Reynolds number describing relation between convection and
diffusion. Depending on a Reynolds number, in particular on behaviour of
functions F4, FB, the coeflicients of the difference scheme are selected which
define behaviour of the numerical scheme. Their limiting values approximate
a pure diffusive or convection problems. A series of examples has shown ef-
fectiveness of the similar approach.
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3. RESULTS AND DISCUSSION

We illustrate the efficiency of proposed schemes on the example of one-dimensional
nonlinear Burgers equation

Ou /0t + udu/dx = pd*u/dx®, pn>0, z€Q, t>0,
u(z,0) = p(z), 0<z<1;
u(0,t) =uo, w(l,t) =wu1, t>0.

We present results, obtained by using algorithm (4) (here we take linear
function Fg(R) = {—-Rat R> —4;0.54— 0885 Rat -4 < R < —2;...; O at
R > 4}) and by some widely used difference schemes, such as the monotonic
difference scheme with directional differences [3], the second order accuracy
monotonic difference scheme with a perturbed coefficient of diffusion [4], the
central differences scheme [5].

u3sp
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t=0.25 t=0.5 t=0.75

Figure 1. Comparison of the schemes on a test problem: y = 0.01, h = 0.05, 7 = 0.005. A
continuous line - a precise solution, B — a solution by the constructed difference scheme, o
— a solution by the monotonic difference scheme with directional differences, A — a solution
by the second order monotonic difference scheme with a perturbed diffusion coefficient, +
— a solution by the scheme with central differences.

3.1. Example 1

Let take boundary conditions ug = 2/(1 + exp(—t/u)), u1 = 2/(1 + exp((L —
t)/u)) and the initial condition ¢(z) = 2/(1 + exp(z/p)). Then the problem
has an exact solution u(z,t) = 2/(1 + exp((z — t)/p)).

In Figure 1 results for different time moments are presented. In the region
of large gradients the proposed scheme (4) is most accurate. If spatial step
reduced 2 times, these differences become less appreciable (see Fig. 1, t=0.25
and Fig. 2a).

The Figure 3 shows change of the flow character depending on a modifica-
tion of a diffusion coefficient.

3.2. Example 2

Let take boundary conditions ug = f(—vt — ), uy = f(1 — § — vt) and the
initial conditions ¢(x) = f(z — 8). Then problem has solution u(z,t) = f(£),
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Figure 2. Influence steps grid on nature solution: x = 0.01. a)-h = 0.025, 7 = 0.005 ¢t =
0.25,b)- h = 0.025, 7 = 0.01, ¢ = 0.5. Of a label same, as in Figure 1.

0,51 05

0,0(

0,0f

00 02 04 06 08 10X 00 02 04 06 08 10X 00 02 04 06 08 10X

t=0.5 t=0.75 t=1.

Figure 3. Comparison of the schemes on a test problem: u = 0.05, h = 0.05, 7 = 0.01.
The labels are same, as in Figure 1.

E=a—vt—B, f(§) = (v+a+ (v —a)exp(aé/w)/(1 +exp(at/p)). We use
parameters: v = 3,5, [ =1, «a =0.5.In Fig. 4 the interval is zoomed, in
order to show the differences of the considered schemes. Again scheme (4) is
best in the field of large gradients.

Thus, as it follows from the presented graphics and from a series of cal-
culations, the approximate solutions can be considerably non accurate. For
large steps the constructed scheme is mostly accurate, despite of small oscilla-
tions in the neighborhood of maximum growth of the solution. The proposed
scheme is sufficiently effective for rough steps of a grid.
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Figure 4. Comparison of the schemes on a test problem: u = 0.05, h = 0.05, 7 = 0.001.
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Konvekcijos — difuzijos uZdaviniy efektyvios baigtiniy skirtumy
schemos

G. Gromyko

Darbe pasiulytas naujo tipo baigtiniy skirtumy schemos, aproksimuojancios konvekcijos ir
difuzijos procesus. Pateikta bendra metodika, kuri apibendrina eksponentinio tipo schemas.
Gerai Zinoma, kad tokio tipo schemos atskirais atvejais yra tikslios. Sudaryti ekonomiski
schemos realizavimo algoritmai, kuriuose panaudota daugiakomponentiniy iteraciniy metody
idéja. Pateikti apibendrinimai dvimaciams uZdaviniams. Teoriniai rezultatai iliustruojami
skaitinio eksperimento rezultatais.



