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ABSTRACT

The main objective of this paper is to study the properties of the Bicklund transformations
and the auto-Bicklund transformations, to construct the nonlinear superposition formulas
for the solutions of the fifth Painlevé equation and to obtain the values of the parameters
after the successive application of the Bicklund transformations.

1. INTRODUCTION

The present paper is devoted to the study of the properties of the Béacklund
transformations and the construction of the nonlinear superposition formulas
for the solutions of the fifth Painlevé equation

w" Bw=1 W 7(1”_1)2( ﬂ)—l—ﬂ—l—w, (1.1)
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where a, 3,7, d are arbitrary complex parameters.

Informally, a Backlund transformation is defined as a system of equations
relating one solution of a given equation either to another solution of the
same equation, possibly with different values of the parameters, or to a so-
lution of another equation. In case the Béacklund transformation links one
solution of a given equation to another solution of the same equation with the
same values of the parameters, it is usually referred to as the auto-Béacklund
transformation.
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The Bicklund transformations of the equation (1.1) which, in particular,
allow us to build a hierarchy of solutions using the known seed solution are
obtained and the conditions of the existence of the rational and one-parameter
solutions can be found in papers [3], [6], [5] (for overview see [4] — [2]). The
repeated application of the Bécklund transformation has been studied in [6].
However, in this paper the relations presented in [6] will be extended and
modified.

2. THE BACKLUND TRANSFORMATIONS

It is well-known that there exist [3] the Bicklund transformations which es-
tablish the correspondence between solutions of equation (1.1) with different
values of the parameters in case § # 0.

Theorem 2.1. Let w = w(z,a, B, 7, ) be a solution of (1.1) with the
parameters a, 3, v, 0 # 0, such that

Fi (w) = zw' — e1cw® + (e1¢ — e2a + e3k2)w + £2a Z 0, (2.1)
where ¢ = 2a, a®> = —28, k* = —26. Then the transformation
TE1,62,63 : U)(Z,Ck,ﬂ,’y,(S) — wl(z;alaﬂl;’h;él) =1- 253ksz1_1(w) (2.2)

defines another solution wi(z,a1,B1,71,01) of (1.1) with the values of the
parameters

ay = v +esk(l—e2a—e10))?, 1 = —e3k(l —e2a —e10)]’,

_1 1
160 165"

7 =53k(62a—510), 51 :5, (23)
where €2 =1, i € {1,2,3}.

Solution w(z, a, B, 7, §), for which inequality (2.1) holds, i.e., F} (w) # 0, and
which is called the solution of the zero level (or the seed solution), generates
eight different solutions of (1.1) of the first level w;(z,a;, Bi, vi, 0;), where
i € {1,2,3,...,8}, according to the choice of the branches ¢ = v2a, a =
V=28, k = v/—2§ determined by the choice of €1, 2, €3 respectively. So-
lutions generated after the n—th fold application of the transformation of
Theorem 2.1 are called the solutions of the n—th level with the assigned in-
dices i1, ...,in, where i; € {1,2,...,8},j € {1,...n}, n > 1.

Let us show that the value of the parameter e3 may be fixed, and, con-
sequently, we may consider solutions of (1.1) of the n—th level according to
the choice of the branches of parameters £; and €5 when €3 = 1. The fol-
lowing lemmas will essentially be used to prove this statement and the other
theorems.
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Lemma 2.1. The branching of the parameter €3 for the solutions of the first
level is equivalent to the inversion T¢, c, 1 w(z) = (Tt,, &y, -1 w(2)) 7 .

Proof. The statement of Lemma 2.1 follows immediately from transforma-
tion (2.2), (2.3). Actually, let w; and w4, 7 € {1,2,3,4} be the solutions
of (1.1) generated from the solution w(z) when €3 = 1 and g5 = —1 re-
spectively by means of the transformation of Theorem 2.1. Using formula
(2.2) it is easy to show the validity of the relation w;(z,a, Bi, Vi, 6;) =
w; 4 (2, —Bi, —ai, =i, 6;). W

Lemma 2.2. The following relation is true: To,, 55, 05 © Tey,e0,e5 W(2) =
To1, 05, —05 © Tey, £5, —e5 w(2), where ‘712 = 512 =1,i€{1,2,3}.

Proof. From Lemma 2.1 and transformation (2.2), (2.3) we get immediately
that if W(2) = Tey, ey, esw(2) and @ = Ty, oy, —e,w(2), then w(z) = 1/w(2).

Thus? TUl, 02, Usw(z) = T01, 02, 703@71(2)' u

Note, that the relation of Lemma 2.2 demonstrates the commutativity of the
construction of solutions according to the choice of branches of the parameters
when transformation (2.2), (2.3) is applied.

Thus, the solutions of the second level generated with the help of the double
application of transformation (2.2), (2.3) with the fixed branch of 3 coincide
when the parameters a, 3, v, § are the same.

Lemma 2.3. The double application of the transformation of Theorem 2.1

with the following choice of the branches of the parameters €1, €2, €3 s equiv-
alent to the inversion of the seed solution

TL —1,e3° TEL 2,63 - w(z) - w_l(z)'

Proof. It suffices to remark that Lemma 2.3 easily follows from transforma-
tion (2.2), (2.3) applied twice. B

Using Lemmas 2.1 — 2.3, we immediately infer the following statement.
Theorem 2.2. The repeated applications of the transformation of Theorem

2.1 with the following choice of the parameter branches 1, €2, €3 are equivalent
to the identical transformation

I = Tla -1, —e3 © TEL €2, €3 - w(z) - w(z)a
I

Ti, 1,107, 60,1071, —1,1 0 T2y, 5,1 1 w(2) = w(2).

Thus, by virtue of the statements of Theorem 2.2 the value of the parame-
ter €3 may be fixed and below we may take €3 = 1 without loss of generality.
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Moreover, in case § # 0 we may always take 6 = —1/2 without loss of gener-
ality as it can be achieved by applying the gauge transformation.

Let us study the nonlinear superposition formulas which link solutions of
(1.1) after the repeated application of transformation (2.2), (2.3). Note, that
the superposition formulas obtained below may be regarded as the alternative
forms of the discrete Painlevé equations [1]. When the parameter e3 is fixed
(es = 1), the seed solution w(z, @, 3,7, —1/2) for which (2.1) holds generates
four different solutions of the first level w;(z, a;, B, vi, —1/2), 1 € {1,2,3,4},
of (1.1) according to the choice of the branches g1, & :

Ti1,1w=w =1-2zw (2w —cw?® + (c—a+z)w+a)_1, (2.4)

Ty, 1,1 w=wy =1-2zw (2w — cw?® + (c+a+z)w—a)_1, (2.5)
T 11,1w=w;=1-2zw(ew +cw® + (—c—a+z)w+a)_1, (2.6)

T 11w=ws=1-2zw (zw' +ew? 4+ (—c+a+2)w— a)_l . (27

Note, that further we shall consider the general case when a # 0, ¢ # 0.
When a = 0 we have w; = wy and w3 = wy and the superposition formula
1/(1—wq1) —1/(1 —w3) = ¢(1 —w)/z is valid. In case ¢ = 0 we get wy = ws,
wy =wg and 1/(1 —wy) —1/(1 — wy) = a(l — w)/(2w). If the parameters a
and ¢ are equal to zero simultaneously, all solutions of the first level coincide
provided €3 = 1 and the subsequent application of the transformation (2.2),
(2.3) is possible if w # const exp(—v/—20z) when v = /—24.

Theorem 2.3. The seed solution and any two solutions of the first level are
algebraically dependent.

Proof. By eliminating w’(z) between equalities (2.4) — (2.7), we find the
explicit superposition formulas connecting the seed solution w(z) and the
first level solutions w;(z), where i € {1,2,3,4}. &

From Theorem 2.3 we get immediately by direct computation

1 11 1
1—11]1 1—11)2_1—11)3 1—11]4'

(2.8)

Theorem 2.4. Any three solutions of the first level are algebraically depen-
dent.

Proof. From Theorem 2.3 we get immediately by direct computations

c(wy —wa)(wy — 1) + wa(a(w; — 1)(wy — 1) + (w1 — w2)2)

a(w1 — 1)(11)2 — ]_) =+ (wl - w2)(C(’LU2 _ 1) + Z) 3 (29)

wy =
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_ a(wr — Dwy(we — 1) + (w1 — wa)(c(wr — 1) + w1 2)
T Ty g e gy e R
wy = a(wy —ws)(ws — 1) + ws(c(wy; — 1)(ws — 1) + )(’11)3 —wy)z) (2.11)
(

(
c(wr — D(ws — 1) + (w1 —ws)(a(ws — 1) — 2) ’
(

ws = a(ws —wa)(wg — 1) + wa(c(l —wa)(wg — 1) + (we — wy)2) (2.12)
(1 —wo)(wy — 1) + (we — wg)(a(wy — 1) + 2) ) )
Relations (2.9) — (2.12) link three arbitrary solutions of the first level and that
proves the statement of Theorem 2.4. W

It is necessary to point out that the question of the deduction of the nonlin-
ear superposition formulas linking solutions of two adjacent levels is partially
considered in [8].

Let w;, j(2), 4, j € {1,2,3,4}, be the solutions of the second level obtained
after the repeated application of the transformation (2.2), (2.3) to the seed so-
lution w(2), i.e., wi,j(za @i, js Bi gy Vi 61',.7') =Toy,00,19T¢,, 65,10 (2, @, 8,7, 6),
where e =07 =1, k € {1,2}.

Taking into account (2.8) and Lemma 2.3, it is not difficult to get the
following nonlinear superposition formula relating solutions of the zero and
second levels:

1 n 1 + 1 w
l—wi,l ].—'11),',4 11),'3—]. w—1

)

’

where i€ {1,2,3,4}.

Let us deduce the nonlinear superposition formulas linking the seed solution
to the solutions of the first and second levels after the repeated application of
the transformation (2.2), (2.3). Assume that w; = T, ,, 1w(z) and w;, ; =
To,, 55 qw;(2). Calculating directly, we get that if w; 1 = T1, 1 1wi(2), wi, 2 =
Tl, -1 ’111),'(2:), w; 3 = T,1,1 ,111],'(2), and w; 4 = T,I’,l ,1’11},'(2:), then the
following relations are true:

w 1 (1—w;) 1

- =—a1——, W2 = —,

w—1 1—w; 2W; w
w 1 (I =wi)(cw; —ar) w 1 _a(l—wy)
w—1 1-—w;3 2W; Tw—1 1—w;a z ’

where the choice of the branches ¢, a; is fixed and ¢; = /201, a1 = \/—2051.

3. THE REPEATED APPLICATION OF THE BACKLUND
TRANSFORMATION

In this section we prove the following theorem on the general structure of
the parameters after the repeated application of the Bicklund transformation

(2.2), (2.3).
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Theorem 3.1. Successive applications of the Backlund transformationT,, ., 1
to the seed solution w(z,a,B,v,0) of (1.1), where § = —1/2, lead to the so-
lution wy (2,04, B1, 11, 01 = —1/2), where new parameters have one of the
following forms:

]-) ap = (p+n1)2/23 /81 = _(q+n2)2/2a Y1 = ’)/+’I'L3, §= 2”43 (31)

2) a1 =(q+n2)%/2, fr=—(p+m)*/2, n=—7+ns, s=2n, (32)
3) a1 = (—ep—vg+ery+2n1+1)?/8, B = —(—ep—vg—e1y+2n2+1)?/8,
1 = (—ep+vgler +n3, s = 2n4, (3.3)
4) a; = (—ep+vg—e1y+2n1+1)2/8, B1 = —(ep—vqg—e1y+2ns +1)%/8,
v1 = (ep+uvg—1)e; +n3, s=2ny, (3.4)

where

pPP=2a, *=-28, VP =¢’>=¢j=1, s=ni+na+tng, n; €7, j=1.4.

Proof. This theorem is best proved by using induction.

Note, that we may apply a sequence of the Béacklund transformations if
w # cexp(—kz) when a = 0,8 = 0,7y = —k = —/—24. But let us assume
here that neither 7y + v2a + v/=28 — 2n + 1 nor (2a — n?)(28 + n2) are
equal to zero and n2 = 1, n € N. These assumptions mean that w(z) does
not belong to any one-parameter family of solutions.

Let Ac1,c2, € = €% = 1 denote a transformation (o, 8,7v) = (a1, B1,7),
where a4, 81,71 are defined by (2.3). The notation A?%,EQ means that Ag e
has been applied k; times. At first we prove by induction that specific com-
binations of the transformation give us the following result:

a) A¥Y o Acieo : (o, 8,7) = (a1,B1,m), where ay, 81,7 take one of the
following forms:

(aa ﬂ: 7); (_/Ba —Q, _’Y)J
(1 —gea —pe1 —7)?/8, —(1 — qe2 — per +7)*/8, per — ge2),

((1 — geo — pe1 +7)?/8, —(1 — gea — pe1 —7)?/8, —pe1 + gea),

b) A’f?_l oAa1e2 1 (@, 8,7) = (a1, P1,71), where aq, 81,71 take one of the
following forms:

(aa _(nl - QE2)2/2, Y= n1)7 ni € N:

(1 + ge2 —pe1 —7)?/8, —(1 — gea + pe1 — v + 2n1)?/8, pe1 + g2 —ng — 1),
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(1 — ge2 — per +7)%/8, —(1 — gea — pe1 — v + 2n1)? /8, —pe1 + gea — n1),

¢) A¥ o Acieo i (a,8,7) = (ea,B1,m), where ay, B1,71 take one of the
following forms:

((nl _p61)2/27 ﬂ: ’Y‘f"l’Ll), ny € N7
(1 +ge2 —per +v +2n1)%/8, —(1 — qe2 + pe1 +7)?/8, pe1 — ge2 +n1 + 1),
(1 — gea —per +7 +2n1)?/8, —(1 — ges — pe1 —v)?/8, —pe1 + ge2 + 1),

d) A oA : (@, B,7) = (o1, B1,7), where ay, 81,71 take one of the
following forms:

((n1 — pe1)?/2, —(n1 — ¢e2)?/2, 7), n1 € N,

((1 —ge2 — pe1 +v +2n1)?/8, —(1 — gea — pe1 — 7 + 2n1)?/8, —pe1 + gea).

Thus, combining a) — d), we get that successive applications of the Bicklund
transformation T¢, ., 1 to the solution w(z,a,f,7,d) of (1.1), where § =
—1/2, lead to the solution w; (2, a1, b1, 71, 01 = —1/2), (k = 1), where new
parameters take one of the following forms:

]-) ap = (p+n1)2/23 /81 = _(q+n2)2/27 Y1 = ’7+’I’L3, s = 277/4,

2) a1 = (g +mn2)%/2, B1 = —(p+n1)?/2, 1 = —y +n3, 5 = 2ny4,

3) a; =(—ep—vqg+v+2n + 1)2/8, B1=—(—ep—vg—~v+2n2+ 1)2/8,
Y1 = —ep+vg+mns3, s=2ny4,

4) a; = (—ep—vq— v +2n1 +1)?/8, B1 = —(—ep —vg + v + 2n + 1)?/8,

Y1 =€Ep —vq+n3, §=2ny,

5) a1 = (—ep+vg—7+2n1 +1)%/8, f1 = —(ep — vg — v + 2ny + 1)*/8,
T =€ept+vg—1+mns3, s=2n4,

6) a1 = (—ep+vg+y+2n1 +1)%/8, f1 = —(ep — vg + v + 2ny + 1)?/8,

v =—(ep+vqg—1)+n3, s=2ny4,
pPP=2a, ¢ =-28, 12 =e>=1,s=n;+na+n3, n; €2, j=1.4.

To end the proof of theorem, it is sufficient to make different combinations of
transformations, e. g., A¥3 [ oAF? joA s, AR _joAF? oA, AP0
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A1g oA o, A’i3171 oAy 0Aq 2 and to show the completeness of 1) —
6) with respect to A-transformation. The application of A-transformation to
1) — 6) yields the following: Asi,2 : 1) — 3) This notation means that if we
apply As1,s2 to the parameters which are written in the general form 1), then
we obtain new parameters which may be written in the general form 3). Next,
A51,52 : 2) — 4), A171 : 3) — 2), Al,—l H 3) — 5), A_1,1 H 3) — 6), A_17_1 :
3) — 1), Al,l :4) — 1), Al,—l 4) — 5), A_1,1 4) — 6), A_17_1 : 4) — 2),
A1’1 : 5) e 3), Al,—l : 5) — ].), A_1’1 : 5) — 2), A—l,—l : 5) — 4), Al,l :
6) > 1), A1 :6) = 3), A_11:6) = 4), A_1,_1:6) — 2). The proof is
completed. Note, that parameters of the current theorem may be rewritten
in more compact form (3.1) — (3.4). &

4. THE AUTO-BACKLUND TRANSFORMATIONS

Theorem 3.1 allows us to deduce the auto-Backlund transformations that link
different solutions of (1.1) with the same parameter values. There exist several
trivial auto-Backlund transformations for (1.1), namely:

So : w(z,0,6,0,0) = w(-2,0a,8,0,0),

S w(z,a,—a,0,6) = w(z,a,—a,0,d),
Sy w(z,a,—a,7,0) = w i (=2,a,—a,,6),
Ss : w(z,a,B,0,0) = w(eiz, a,3,0,0),e% = 1.

We shall not consider the last one because (1.1) may be solved in the case
when v = § = 0. In general, the application of Sy — Sz yields new solutions,
as it is clear from the following examples:

HWw=z-a,a=1/2,y=a+2,a>=-28,a#1,5§ =-1/2;

w=kz+1,7v#0,a=-=1/2, k> = -24.

Now we may apply a composition of (T, A)-transformations and Sy — S in
the following way: w1 (2, a, 3,7,0) = T~ *0S;0T*w(z,a, B,7v,0), k € Z, i=
1,2,3. Thus, we may obtain all parameter values when (1.1) has the auto-
Backlund transformations, using the general parameter structure after the
repeated application of the Backlund transformation. Therefore, the following
statement is valid:

Theorem 4.1. Equation (1.1) has the auto-Backlund transformations of the
form T—%0S;0T* i = 0,2 when either y =n, n € Z or V2a+/—2B8=n, n €
Z, and the auto-Backlund transformations of the form T—* o S; o T* when
either 2o+ /=28 = 2n1 +ny, ¥ = na, ni,n9 € Z or 8a = (2n, + 1), 86 =
—(2712 + 1)2, ni,Ny € Z.

Proof. The deduction of the formulas is based on Theorem 3.1 on the general
structure of the parameters after the substitution of the parameters of Sg— .S
into (3.1) - (3.4) &
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Next we derive the explicit form of the auto-Backlund transformation S
of the solutions of the fifth Painleve equation. As it has been noted, S
links different solutions with the same values of the parameters. Further we
obtain the explicit form of the auto-Backlund transformation T, ., .., © S 0
(Tey e0,e5) ', where (Tt c,.05) ! is given by

(TE1,52,53)_1 : u’}(zadagaﬁlﬁ S) _> w(z’a’ﬂafy}(s) = ]' - 8(5Z1I)F2_1(’[D),

where Fy(w) = (1—e2a—¢e1¢)esk — v+ (27 +420)w + +((—1+e2a+e1¢)esk —
Y)W? + 2e3kz,

& = —(y +e3k(l — e2a — £1¢))*/(166), B = (v — e3k(1 — e2a — £1¢))* /(16),

7 =esk(esa —e1c), 6 =20, =1, i€ {1,2,3}.

Let w = w(z, 0, —0,0,0), w1 =T11,e,w, wo =T1,1,e,w, w3 =T_1,1,6,W,
wy =T 1 1w, Wy =T11e,(Sw)by =T 16,(Sw), w3 =T 1,,(Sw),
Wy = T_1,1,,(Sw) be the solutions of the fifth Painleve equation obtained
with the help of transformations (2.1) — (2.3). Note that solutions of (1.1) @;
are the functions of w; and wj, i € {1,2,3,4}. However, according to (2.1),
we can find the algebraic relations between solutions w, w;, w;. Thus, the
following statement is valid.

Theorem 4.2. Solutions of the fifth Painleve equation listed above are con-
nected by means of the following nonlinear superposition formulas:

U~11 = 1/11)1, U~J4 = 1/11]4,

262w + ezke(w — 1) (wp — 1)
© 20zwws + eske(w — 1)2(wy — 1)’

G — —20zw + eske(w — 1)} (w3 — 1)
57 Z26zwws + eske(w — 1) (wg — 1)

Proof. These relations are obtained by direct computations. Note that the
above formulas are not valid for the rational so lutions of 1.1). W
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Penktosios Penlevé lygties Bicklund’o transformacijos ir ju pri-
taikymai

V. Gromak, G. Filipuk

Darbe nagrinéjamos Backlund’o transformacijy siejamy su penktaja Penlevé lygtimi, sa-
vybés. Remiantis §iomis savybémis sukonstruotos Penlevé lygties sprendiniy netiesioginés

superpozicijos. Tai suteikia galimybe sudaryti nagrinéjamos lygties sprendiniy herarchija ir
susieti ja su kitos lygties (su kitais parametrais) sprendiniais.



