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ABSTRACT

In the present paper we consider second order compact upwind schemes with a space split
time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed
to the conventional approach associated with incorporating adjacent space cells we use
information from adjacent time layer to improve the solution accuracy. Taking the first
order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth
solutions) order accurate difference schemes. One of them (CABARET3) is formulated in
a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic
shock-tube tests are used to compare the new schemes with several well-known second-order
TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than
the standard second-order Roe scheme with MUSCL flux splitting.

1. INTRODUCTION

When solving hyperbolic equations such as the Euler equations numerically,
one of the main problems that occurs is associated with the emergence of a
wide range of scales in the solution. For the case of compressible gas flows, this
range spans from weak acoustic pressure waves to large gradients propagating
as shock waves.

To be robust in this context a numerical method should satisfy a variety
of contrasting requirements. First, to be shock capturing the method should
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maintain integral properties and be conservative. On the other hand, such
numerical schemes should account for a correct representation of genuine prop-
erties of the differential equations, such as characteristics, where possible, and
have minimum dispersive (phase) and dissipative (amplitude) errors where the
flow can be linearized. The failure of numerical methods to account for sharp
gradients in the solution usually manifests itself in non-physical oscillations.
The lack of accuracy, caused by a low order of approximation to differential
equations, results in smearing out of solution amplitudes. Let us consider a
simple linear convection equation.
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In order to exclude non-physical oscillations in the solution, a finite-difference
scheme should be monotonic. There is, however, a well-known theorem by
S.K. Godunov [2] negating the existence of a liner difference scheme being
both monotonic and higher than first order accurate. A traditional approach
to avoiding this limitation consists of developing non-linear difference schemes
— with non-linear fluxes.

For simplicity, let us consider a uniform finite-difference grid with a space
step h and a time step 7. We will adopt the usual notation of indicating spatial
nodes by subscripts and temporal nodes by superscripts. Traditionally one
increases the approximation order for spatial and temporal terms separately
— by constructing more accurate spatial fluxes first and then integrating the
residual in time using a higher order method. A classical way of constructing
second order accurate (in regions the solution is smooth) monotonic (Total
Variation Diminishing) scheme is either to apply Harten’s anti-diffusion idea
using flux extrapolation from adjacent space cells [6]
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or to exploit Van Leer’s variable extrapolation method (MUSCL) using vari-
ables from adjacent space cells [10]
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Here a is a non-linear limiter function that deals with large gradients in so-
lution.
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Though in the linear case these two approaches result in identical finite-
difference schemes, in the case of quasi-linear equations the approach based
on MUSCL is known to be more robust [1]. Both these techniques have in
common extrapolation from adjacent spatial cells. Hence their performance
should be dependent on the quality of the space grid.

Alternatively, instead of using extra space cells one can use temporal in-
formation to gain more accuracy without having to extend the spatial stencil
of the scheme. For instance, one can exploit a relatively unknown second-
order linear CABARET scheme [3,4] (which is also known as Upwind Leapfrog
Scheme [8]) regularized with non-linear correction [5]. The CABARET scheme
can be presented as a combination of a conservation stage, updating the mid-
cell variable,
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=0, (1.4)

where the nodal value u being referred to the cell walls and the mid-cell one
¥ being referred to the cell center, and a projection stage where the nodal
variable is updated using an extrapolation rule. As part of the extrapolation
stage, values at the nodes are corrected if found to be outside of the mono-
tonicity range. The conservation property of the scheme holds because it is
the mid-cell conservative variable which is marching in time.
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if (a7 < min(u?,u? ))ult = min(u?, ul ;).

The CABARET scheme with non-liner correction proved to be notably more
robust in linear convection tests with coarse grids than standard TVD schemes.
Our goal in the current paper is to develop CABARET counterparts for gas
dynamics equations.

The paper is organized as follows. In section 2, we develop three new
CABARET schemes for the Euler system. Numerical examples are provided
in Section 3 for two shock tube problems where we are comparing the new
schemes with a few classical second order TVD schemes commonly used in
practice [7]. Finally, we end up with conclusions in Section 4.
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2. COMPACT SCHEMES WITH SPACE-SPLIT TIME DERIVA-
TIVES

2.1. CABARET and CABARET2 schemes

The CABARET scheme for the linear convection equation can be viewed as
a superposition of first order upwind differences (Simple Upwind Scheme)
and its conjugated scheme. It is natural to try to develop its gas dynamics
counterpart using the same technique. Having chosen the first order Roe
scheme as a gas-dynamic counterpart of Simple Upwind, one can construct
CABARET schemes in a similar manner. A natural thing to do is to employ
the CABARET formulae (1.4) devised for linear convection for each of the
simple wave components in linearized wave equations. We refer the reader to
[7] for the details of characteristic splitting techniques for the Euler system.

n+1

n-1/2
n-1 \1

Figure 1. Numerical stencils for schemes CABARET2 and CABARETS3.
Specifically, using the Roe matrix L° ¢ U = W,U = (p, pu, pE)

M =8, wy = p—p/&; Ao =1+ & wa =u+ p/(pé);

A3 =@ — & ws = u— p/(pé),
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we can split the Euler Jacobian
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into characteristic variables ¢ = 1, 2, 3 propagating with eigenvalues A1, Az, A3
(Fig.1)
- T -
Anlpq -+ Aq E(Si_lﬂuq = 0, (21)
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where the ’conservative’ central value is defined according to the direction of
the 'wind’

L \nt1/2 (@)™ + @) ,)/2 i A >0,
(\Ilq)z'—l/2 N ((ﬁj)ffll + (ﬁj)?)l/z if AZ <0. 22

As characteristic splitting can be done using Roe formulae, the sum of all
spatial contributions from different simple waves will be equal to the total
flux difference

AmE =Y A, = _% 3" Abicrypiiy = _% [F(U,.") —F( *,.n_l)],
q q

which should guarantee the conservation property for the scheme.

Depending on the eigenvalue sign in a cell one can compute the amplitudes
of left and right running simple waves. According to the correction stage,
then, the calculated variations should be checked to ensure that the maximum
principle for each of them is satisfied. If not, the corresponding variations
should be corrected (limited):
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Finally, the corrected contributions should be assembled at each node giving
the total variation of conservative variable there.

Let us call the above algorithm CABARET1 scheme for the Euler equa-
tions. Though stable this scheme results in unsatisfactory dispersive qualities
of the solution. The scheme, however, can be improved if the reconstruction
of simple waves is modified. Specifically, during the discretization stage of the
simple wave equations (2.1) one can add up regularizing dissipation [4] whose
differential analogue is the addition of —6% to the right-hand side of the
convection equation. It was shown in [4] that this choice of regularizing dis-
sipation greatly improves the dispersive properties of the CABARET scheme
for linear convection equation. The introduction of this artificial dissipation
amounts to the following modification of the interpolation rule (2.2):
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where 0 < € < 1. The formulae for simple waves amplitudes are
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where cases (1) — (4) correspond to the eigenvalues signs (\,)_, 52 >0
-1 —1 -1
(o) 2 >0 () 1/2 <0, (A )?71/2 < 0; ()“1)?71/2 > 0, ()“1)?—1/2 <

0; ()\q)l 12 <0, (Ag )Z 1/2 > 0, respectively.

As in the CABARET1 scheme, the finding of left and right amplitudes of
simple waves is followed by correction and assembling stages.

The modified scheme will be referred to as CABARET?2 and can be viewed
as a generalization of the CABARET1 (¢ = 0) and first order Roe (¢ = 1)
schemes.

2.2. CABARETS3 scheme

The presence of tunable parameters is not a pleasant thing for a method. A
conceptual drawback of CABARET1 and CABARET?2 is that they are both
based on simple wave reconstruction using simple waves from different time
layers which lacks physical foundation.

A successful approach, which avoids this, lies in the combination of conser-
vative step performed using conservative variables, i.e. density, momentum
and energy, with a characteristic splitting applied after that.

Specifically, the first conservative sub-step advances the conservative central
variables in time

+1/2 1/2 — —
Ve — V5, Flus(Or) - Flua(0r)

T h

=0. (2.3)

This sub-step makes the scheme unconditionally conservative regardless of the
later splitting. After the conservative sub-step each cell has a set of vectors
of conservative variables defined at the cell center and conservative variables
defined at the left and right nodal points.

At the second sub-step these vectors are multiplied by the left Roe charac-
teristic matrix

1— 2 hu?/c? (v — u/c —(y=1)/¢
(F 1U2 —uc)/(pe)  (c—(y—1u)/(pc) (v—1)/(pc)
— (w2 +ue)/(pe) (c+ (v —1u)/(pc) —(v—=1)/(pc)
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and transformed into the vectors of Riemann variables:

n+1/2 _ R =n41/2
?—1/2 =L Oi@ ‘I’?—uz ,
= LR o Ur, (2.4)
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This is a vector analogue of the scalar formulae (1.4), however, in the vector
case the characteristic variables in the mid-cell (n+1/2) come already resolved,
being obtained from ¥"+1/2,

To update values at nodal points, then, one can use the CABARET pro-
jection formula together with correction (1.5) for each characteristic variable
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i

The corrected variations of Riemann variables dw = w™t! — w™ are assem-
bled into the variations of conservative variables by multiplying by the right
characteristic matrix

1 p/(2c) —p/(2c)
u p(u + c)/(2¢) —p(u—c)/(2¢)
1w pu(H +uc)/(2¢) —pu(H — uc)/(2c)

Finally, by adding up left and right conservative variations, the total nodal
variation of conservative variable is obtained

N left left
(atp+) ™ = RF* o (dwi )

(dﬁf“)”ght = Rfoe g (dw?*l)ﬂght;
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Due to the properties of the Roe Jacobian sonic points u & ¢ ¢ are to be treated
separately. A quite robust recipe consists of using the first order upwind
approximation with modified eigenvalue (P.Roe) in the vicinity of sonic points.

left
For A;_1/2 > 0 this amounts to letting (dw?“) = —e(w] —wi | )7/h;
right
<dwz"_+11) = 0, where € = max{O, (}‘i+1/2 - )\z), ()‘H-l - )\,’4_1/2)}.
At the initial time step one can use the first order Roe scheme, which follows
by replacing the previous mid-cell value by the arithmetic mean of the values
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at nodal walls

0500 + TR Flue(0r) — Fluz(0r )
+
0.57 h

=0.

This brings us to a simple robust, tuning-free scheme which will be referred to
as CABARETS3. This scheme is conservative, second order in the regions of
smooth solutions and it prevents the appearance of non-physical oscillations.

3. NUMERICAL EXAMPLES

Two shock tube problems by Sod have been chosen as test cases for the nu-
merical methods developed. These are:
1. Subsonic test

(p,u,p)**7* = (1,0,1.e + 5); (p,u,p)"" = (0.125,0,1.e +4).
2. Supersonic test

(p,u,p)'7* = (1,0,1.e 4+ 5); (p,u,p)"™" = (0.01,0,1.¢ + 3).
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Figure 2. Shock-tube problems — comparison between MUSCL with Min-
Mod versus CABARET?2 at the subsonic test (up) supersonic test (low).
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Figure 3. Shock-tube problems — comparison between MUSCL with Min-
Mod versus CABARET3 at the subsonic test (up) supersonic test (low).

Several traditional second-order TVD schemes [7] based on characteristic
splitting have been tested

e Using flux extrapolation: second order Roe upwind scheme (four types of
upwind biased limiters: Van Leer’s, MinMod, Superbee, and a third order
accurate limiter from [11], referred to as MSU here), Lax-Wendroff scheme,
and Yee’s version of LW (three types of symmetrical limiters based on Min-
Mod);

e Using variable extrapolation with Roe scheme: MUSCL with four types of
upwind biased limiters; and

e CABARET, CABARET2 and CABARET3 schemes

The main results of the comparison among traditional TVD schemes agree
with [7]. The upwind schemes (Roe) tend to be more accurate than the
centered difference schemes (Lax-Wendroff and Yee). On the other hand,
the performance of centered schemes depends slightly less on CFL number.
Among the limiters the MinMod limiter is seen to be the most robust in terms
of clean work within a wide CFL region. Superbee and MSU limiters are more
compressive but their performance is greatly affected by CFL number.
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The variable extrapolation seems to be superior to the flux extrapolation,
which have been compared on the example of the first order Roe scheme,
though there is no striking difference in performance between flux and variable
extrapolation noticed.

Fig.2 shows the comparison of CABARET?2 with € = 0.3 versus Roe MUSCL
MinMod. It can be seen that CABARET?2 scheme gives a comparable qual-
ity of results, showing good shock wave resolution but slightly smearing the
corners of the expansion fan.

Fig.3 demonstrates results of the CABARET3 scheme in comparison to Roe
MUSCL MinMod. It can be seen that CABARETS is not only very good at
shock /contact wave resolution but also at capturing the edges of the expansion
fan.

Being compact, a CABARET scheme should be less sensitive to the space
grid quality than standard, not as compact, schemes. To explore this,
CABARETS3 and Roe MUSCL MinMod were tested on a very irregular grid
whose cell width differed by an order of magnitude hpax/hmin = 20. As demon-
strated in Fig.4 CABARETS is notably more accurate with this grid as well.

4. CONCLUSIONS

In the paper a few compact second order accurate conservative schemes of
CABARET-type are developed for the one-dimensional Euler equations. These
schemes can be viewed as generalizations of the characteristic Roe scheme by
incorporating an additional time layer. Importance of two-time layer charac-
teristic splitting for CABARET schemes is emphasized. Several well-known
second order TVD schemes are considered and the second order Roe scheme
with MUSCL flux splitting using MinMod limiter is chosen as the most ro-
bust representative of 'industry standard’ methods. In comparison to the ’the
industry standard’ scheme, CABARET3 is shown to be more accurate both
in resolving shock/contact waves and capturing the edges of expansion fans.
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Figure 4. Shock-tube problems — comparison between MUSCL with Min-
Mod versus CABARETS3 on highly irregular mesh with Amax/hmin = 20 at
the subsonic test.
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Vienmaciy Eulerio lyg¢iy sprendimas CABARET3 baigtiniy-skirtu-
my schemomis

V.M. Goloviznin, T.P. Hynes, S.A. Karabasov

Siame straipsnyje nagrinéjamos kompaktiskos antrosios tikslumy eilés baigtiniy skirtumy
schemos, kuriose panaudota speciali iSvestiniy aproksimacija. SprendZiamas vienmatis
spudziy dujy judéjimo uZdavinys. Darbe pasiulytas didesnio tikslumo schemy konstra-
vimo metodas, kuriame i§naudojama informacija apie sprendinj i§ Zemesnio laiko sluoksnio.
CABARET3 schema yra dvisluoksné, todél jos realizavimo algoritmas yra ekonomigkas.
Pateikiami skai¢iavimo eksperimento rezultatai, kurie patvirtina, kad CABARET3 schema
yra tikslesné uz antrosios tikslumo eilés Roe schema, naudojan¢iag MUSCL srauto i§skaidyma.



