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ABSTRACT

This paper presents an efficient approximation for M/PH/1 queuing systems based on the
replacement of the majority of the vector valued state probabilities by a diffusion approxi-
mation. The strength of the new approximation is that it gives more accurate results than
the current diffusion approximations at both high and low traffic intensities and at little
extra computational cost. The accuracy of the new approximation during the transient
is shown by comparing it numerically with solutions to the M/PH/1 system and current
approaches based on the diffusion approximation.

1. INTRODUCTION

The study of queues is of general importance to the service and manufacturing
industries and in the analysis of computer system performance. Many queuing
models are applied to queuing systems that are operating in the steady state
and the mathematical treatment of such systems is straightforward (Kleinrock
[9]). It is becoming increasingly recognized that the behaviour of queuing sys-
tems during the transient is also important. Unfortunately, the transient is
often simply overlooked by practitioners because of the difficulties intrinsic in
the mathematics. In practice the only way to deal with transient phenom-
ena in queues is to use approximations, either of the modelled system or of
the state equations themselves. The latter using truncation and numerical
techniques.
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One of the techniques of probability theory that has proved attractive when
it comes to implementing solutions to queuing problems on a computer has
been the development of the theory of phase distributions (see [11] and [12]).
These distributions are very flexible in the sense that any probability distri-
bution can be approximated by a phase distribution to any prescribed degree
of accuracy.

When queuing models are confined so that the service time and inter-arrival
times are modeled using a phase type distribution then very accurate models
of queuing system characteristics are obtainable. The resulting model is an
infinite system of ordinary differential equations (ODEs) called the Chapman-
Kolmogorov (C-K) equations. The C-K equations govern the time evolution
of the probabilities that the system is in a particular state (each state rep-
resents a particular number of ‘customers’ in the system). The fact that
the state equations are a system of ODEs makes them attractive to general
practitioners.

There are two problems associated with the use of phase distributions in
practice. The first is finding a suitable phase distribution to fit a given dis-
tribution ([6]-[8]) and the second is the difficulties that arise in determining
solutions to the resulting C-K equations when the system is operating in a
transient mode. In this paper we address issues relating to the second problem
only. We note in particular that the problem of excessively large systems of
equations arises, after truncation, if the phase representations of the distri-
butions are of large order. For example to represent distributions with very
small variance can require a large number of phases - the constant time service
distribution is represented as an infinite phase Erlang distribution.

Diffusion approximations for queuing systems are now a well recognized
approximation technique for a variety of queuing systems. In the case of
M/PH/1 queuing systems this involves the replacement of the system of or-
dinary differential equations governing the probability of the state of the sys-
tem, by a single partial differential equation(PDE) - the diffusion equation.
The details are discussed elsewhere ([1]-[3], [5], [10] and [13]). Diffusion ap-
proximations result in models that are analytically more tractable then their
M/PH/1 counterparts. In the case of systems requiring distributions with
large number of phases, the PDE could be numerically computed (after trun-
cation) using a finite difference scheme at much less cost than the original
ODE system.

Diffusion approximations are particularly attractive when the system is
congested (high traffic intensity) since the diffusion approximation is known
to be very accurate for such systems. Unfortunately, when the traffic intensity
is low, such approximations are inaccurate and pose serious problems.

It is important to recognize that when a diffusion approximation is employed
then accuracy has been sacrificed particularly for states near the origin. It has
been demonstrated, both analytically and numerically ([2], [3], [13] and [14])
that the approximation of the system of ordinary differential equations by the
diffusion equation becomes increasingly more accurate in the limit when the
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service rate approaches the arrival rate. This is because the system spends
most of its time away from the ‘problematical’ zero state. Several authors
have suggested ways of improving accuracy for states near zero by including
an instantaneous return condition (see [1] and [5]), or by moving the location
of the lower boundary (see [2] and [3]).

In this paper we adopt an approach that captures the accuracy of the C-K
equations for low traffic intensity and the computational efficiency offered by
the diffusion approximation in high traffic intensity conditions. We propose
a hybrid model - part C-K equations and part diffusion approximation. The
connection between the two parts is governed by the conservation of proba-
bility. Through numerical experiments the accuracy of the model is shown
to be far superior to the current diffusion approximations when used in the
calculation of the state probabilities and the mean value of the number in the
system.

The structure of the paper is as follows: the new model is described in
Section 2; the accuracy of the model is investigated in Section 3; conclusions
are presented in Section 4.

2. A NEW TRANSIENT APPROXIMATION FOR M/PH/1
QUEUING

One way of reducing the number of ordinary differential equations (ODEs)
describing a discrete queuing processes is to replace the majority of them
by a partial differential equation (PDE) representing a continuous diffusion
process. Hence, when the traffic intensity is low the majority of the prob-
ability is modeled using the C-K equations modeling the first K states, the
states greater than K will be replaced by a diffusion equation. The accuracy
is expected to be comparable to a truncated system of C-K equations used
to approximate the infinite system or replacing all the C-K equations by a
diffusion approximation. This technique is expected to be accurate for both
high and low traffic intensities.
The C-K equation for a M/PH/1 system has the following form

9 ro(t) = mo(t)(-X) + w1 ()M (2.1a)
%wl(t) = Mmo(t)p — w1 ()M + B) + 2 (t)Mq'p, (2.1b)
d

Eﬂn(t) =1 (M —w, ()M + B) + wp1 () Mg'p,n > 1. (2.1c)

The m,(t) are vectors governing the state probabilities (m(t) is a scalar).

The bold symbols represent square matrices and vectors with dimension m,

determined by the PH type distribution representing the service time [11].
The diffusion approximation to the above system is well known (see Kobay-
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ashi [10] and Newell[13])

fi(@,t) = 5 heal@,t) = Bfal@,0), 2>0, (22)

where f(z,t) is the probability density function of z, a continuous represen-
tative of the discrete states, at time t. & = A+ C?u, 3 = X —p, X is the arrival
rate, u is the mean service rate and C? is the squared coefficient of variation
of the service time distribution.

The equation (2.2) is the subject of an appropriate boundary conditions at,
or near, the origin. For a discussion of these boundary conditions see [10],
[13].

In this paper we propose moving the region of the diffusion approximation
(2.2) to cover the case x > K + 1 where K is some integer and retain a
truncated version of the C-K equations (2.1) for the states less than K.

To introduce such a model we require an ODE describing the behaviour of
state K and a boundary condition governing the PDE at state K + 1 (note
that we assume that f(z,t) = 0, as z = o0 ).

A simple proposal for a candidate equation governing state K is

%«K(t) =k A (OM = T+ B) + pf (K +1,0p.  (2.3)

The missing boundary condition for the PDE is determined by the conserva-
tion of probability,

oo

K
mo(t) + mi(t)e + lim f(z,t)de =1, 2.4
o0+ L+ Jum [ Sl (24)

where € is a m dimensional vector with all the elements 1.

To summarize, the first K — 1 states in the model are taken directly from
the C-K equations; the states greater than or equal to K + 1 are replaced
by PDE (2.2) on z > K + 1, subject to auxiliary condition (2.4) and they
are ‘joined’ by equation (2.3) at state K. For appropriate K, this model can
approximate the state probabilities in both high and low traffic intensities. It
is noted that to solve the resulting model we need to choose a suitable K and
use numerical methods.

To apply the auxiliary condition (2.4) the standard argument is as follows.
Differentiating equation (2.4) with respect to ¢, we obtain

K
d d o

— —; li =0. 2.
dtﬂ-O(t)_'—i:Zldtﬂ-Z(t)s_'—&irg*' K+1+6ft($7t) 0 ( 5)
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Rearranging (2.5) and noting equations (2.1) — (2.3) gives

“Amic(t)e +pf (K +1,0) = lim (50K +146,8) = Bf(K +1+6,1)) = 0.
(2.6)

Unfortunately discretizing (2.6) gave poor results. In practice we obtained
better results using discretization based on retaining an equation for f;(K +
1,t) as in the following argument.

Discretizing the integral in (2.4) with step size equal to h, we obtain the
approximation,

K o]
mo(t) + Y mi(t)e + hf(K +1,6) +h Y f(K+1+ih,t) = L. (2.7)

Differentiating the equation with respect to ¢, we have

K oo
%wo(t) + Z %m(t)a + hf (K +1,t) + hth(K +1+ih,t) =0. (2.8)
i=1

i=1

Rearranging (2.8) and noting equations (2.1), (2.3) and discretizing (2.2) on
z with a standard explicit second order finite-difference results in

FiK +1,8) =3 Ot = (ut 3+ DS +1,0)
+ (5 —g)f(K+1+h,t)). (2.9)

A simple numerical scheme for the model is shown in the following. Let 7 be
a time step size, h be the step size for variable . We approximate 7;(t) ~ L
and f(z,t) ~ fI' where t = nt,o = K + 1+ mh,m or n = 0,1,2,.... We
approximate the new model using Euler time stepping for the ODE and the
standard explicit second order Finite-difference (FD) scheme for the PDE.

7761+1 =l + (=1 + TP M), (2.10a)
7 =xl 4 r(\ngpI — 7P (M + B) + 73 Md'p), (2.10b)
ot =g 4 (7l _ A -7 (M + B) + 77, Mq'p), m <K -1,
(2.10¢)
wi ! =nh 4 r(nhe M =7 (M + B) + ufy), (2.10d)

fK—ri-ll :fK+1 =+ E()\ﬂ-KE - (N + ﬁ + E)fK_H + (% - §)fK+2)a (2.106)

m+1 me - ﬁ(fm—i—l - fm—l)
+ %( n =2t ), m> K 41, (2.10£)
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It is clear that for the M /M /1 queue there is probably little to be gained,
though the possibility of very large gaps between the mesh points for large
x (representing a computational saving) is possible. On the other hand, the
discretized PDE can offer a substantial saving over the ODE system for many
M/PH/1 queuing systems - especially if the phase distributions are of large
order.

In order to apply the model we are required to obtain discrete probabilities
from the continuous density function f(z,t). A variety of techniques were
tried following the ideas in ([1], [3], [5] and [10]), and for the above scheme
best results were obtained by using

K+n+1
Trcan(t) = /K Fo, )z, n=1,2,.. (2.11)
+n
K oo
L(t) = ;nﬂne + /K+1 zf(z,t)dz. (2.12)

3. ACCURACY OF THE APPROXIMATION

In this section the accuracy of the approximation (2.10) is numerically inves-
tigated by comparing its performance with current approaches using diffusion
approximations ([1], [3], [5] and [10]).

The conclusions of this section are based on 5 Erlangian and 4 Hyper-
exponential service time distributions with C? = 0.5,0.3333,0.2,0.1,0.0125
and C? = 2,3,5,10 respectively, and have been further validated on other
more general M/PH/1 systems. Only a limited number of examples of these
experiments are presented here - full detailed results are provided in Gao[4].

To compare the approximations, the following performance measures are
used.

m;(t): The scalar probability of ¢ customers in the system at time ¢.
L(t): The mean number of customers in the system at time ¢.

In the steady state analysis we drop the parameter ¢ to indicate the corre-
sponding steady state values. To measure the error in these performance
parameters as compared with the exact results (the exact results for the
M/PH/1 system are calculated using the Pollachek-Khinchine formula [9]
both the error and relative percentage error are used. They are defined as

error = approximate result — exact result,
approximate result — exact result

relative percentage error = x 100%.
exact result

In the steady state the errors in m; and L are denoted by Am; and AL, and
relative percentage errors in L, denoted by e%.

In the analysis of transient performance the maximum absolute error (A,,)
and the maximum relative percentage errors (A,,) of L(t) for all time are used.
These are defined, respectively, as

Ay = AL@)|Y, A, = .
ax {|AL(®)]} 2ax {le(t)]}
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Steady state performance. We present the steady state error comparisons
for the approximations generated by the new model with Duda [1], Filipiak
[3], Gelenbe [5] and Kobayashi [10] for the M/E3/1 system in Table 1. Table
1 is for the case when p = 0.5 and 0.95 and the new model with various K.

It is noted from the Table 1 that the maximum errors of the probabilities in
the previous diffusion approximations always occurs in mp. A similar pattern
is observed from the new model in which the maximum errors for the proba-
bilities now occur in 7xy;. Filipiak’s [3] approximation for 7o is worst for all
cases but his L is more accurate for those approximations where the traffic
intensity is close to 1.

From the results of extensive numerical experiments (of which Table 1 is an
example) we have the following conclusions.

Table 1.
Errors comparison of 7; and L at steady state in M/E3/1 systems
K ATo AT Ao AT ATy ATs AL %e
p = 0.50

K 0.000 0.055 -0.021 -0.018 -0.009 -0.004 -0.118 -14.139
G 0.000 0.055 -0.021 -0.018 -0.009 -0.004 0.083 10.000
F -0.170 0.174 0.015 -0.007 -0.006 -0.003 0.126 15.108
D 0.000 0.055 -0.021 -0.018 -0.009 -0.004 -0.167 -20.000
N 2 -0.002 -0.001 -0.001 0.014 -0.003 -0.003 -0.009 -1.087
3 -0.002 -0.001 0.000 0.000 0.006 -0.001 0.003 0.328
4 -0.001 0.000 0.000 0.000 0.000 0.002 0.003 0.342
5 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.197
5

0.000 0.007 0.002 0.001 0.000 0.000 -0.311 -2.392
0.000 0.007 0.002 0.001 0.000 0.000 0.158 1.220
-0.024 0.009 0.004 0.002 0.002 0.002 0.015 0.111
0.000 0.007 0.002 0.001 0.000 0.000 -0.317 -2.439
0.001 0.001 0.001 0.001 0.001 0.001  -0.217 -1.673
0.000 0.000 0.000 0.000 0.001 0.001 -0.162 -1.248
0.000 0.000 0.000 0.000 0.000 0.001  -0.135 -1.040
0.000 0.000 0.000 0.000 0.000 0.000 -0.117 -0.904
0.000 0.000 0.000 0.000 0.000 0.000 -0.103 -0.794
0.000 0.000 0.000 0.000 0.000 0.000 -0.091 -0.698
0.000 0.000 0.000 0.000 0.000 0.000 -0.080 -0.612
0.000 0.000 0.000 0.000 0.000 0.000 -0.070 -0.536
0.000 0.000 0.000 0.000 0.000 0.000 -0.061 -0.467

zoHax

O OO0 WN

[y

K:=Kobayashi, G:=Gelenbe, F:=Filipiak, D:=Duda, N:= New Model

1) Generally speaking, as K gets larger the numerical results become more
accurate. It is also true that as p increases the errors rapidly decrease for
small K.

2) Any specified accuracy of the results can be achieved by choosing an ap-
propriate K.

3) Generally speaking, when K = 2(C? < 1) and K = 6(C? > 1) the ap-
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proximation in the new model can reach reasonable accuracy, the relative
percentage errors for L are smaller than 4.3%, which is accurate enough
for most practical applications.

Transient performance. Numerical experiments were done solving the
model (2.10). A time step increment of 7=0.1 was used and the model inves-
tigated using various space step sizes h. Surprisingly, numerical comparisons
show that, when the space discretization is 1, the results are closest to the ex-
act solution of the C-K equations. By giving the errors in 7;(¢) and L(t), and
the maximum absolute errors in L(t) for all time, we present a comparison of
the approximations generated by the new model with Duda [1] and Filipiak

[3].

Soa

25k

a0 E)

s ) s 20 30
Time z(p= 0.7) Time 7 (p= 0.9)

Figure 1. Comparison of the approximations for L(t) in M/E3/1 system
from the new model(K = 2). - - Exact, — Filipiak, — Duda, --- new
model(K = 2)(Note nearly indistinguishable from exact solution)

The comparison of the approximations to L(t) in M/E3/1 systems with
p=10.3,0.5,0.7 and 0.9 is shown in the following Figure 1, from which we see
that the new model with K = 2 is more accurate than the others for all the
traffic intensities over the time period shown.

Figure 2 (p = 0.7) presents the error comparisons to the transient approxi-
mations generated by the new model (K = 2) with Duda’s [1] and Filipiak’s
[3] for the M/E3/1 system. The system is considered starting from empty.
Table 2 presents maximum absolute errors and maximum relative percentage
errors of the approximation to L(t), for all the time, in new model(K = 2),
Duda [1] and Filipiak [3] with p = 0.5,0.95 and various K. From Table 2 and
Figure 2, we have the following conclusions.

1*) When K = 2 the maximum absolute errors and maximum absolute rela-
tive errors of the approximation to L(t) in the new model are much smaller
than those of Duda [1] and Filipiak [3].

2*) When K gets larger, the approximation in the new model becomes more
accurate over all periods of time and for all traffic intensities.

3*) Generally speaking, when K = 2 the approximation in the new model is
more accurate than those in [1] and [3] over all periods of time and for all
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— Filipiak —. Duda ... New Model
0.3 0 0 .
Toazs -0.05 -0.01
E 0.2 0.1 -0.02
5 \
E o015 =0.151% -0.03
01 -0.2 T~ -0.04
10 20 30 40 50 0 20 40 0 20 40
=250 - of .
2 S
529 -10 .
=0bod R R -
o 100 -15)
® 50 i/ =2
10 20 30 40 50 0 20 40 0 20 @0
x 107°
< o2 0.08 18T T
== 0.06f _ 10}:
= o 0.04f T TTITTIT— o s :
E 0.02}, D ereeemEaiimen i mee,
-0.2 O S mm e S !
N ELIE T mmig ORI
10 20 30 40 50 0 20 40 20 40

Figure 2. Errors comparison of the approximations for L(t) and m;(t)
for the M/Es3/1 system with p = 0.7. Note the magnitudes on the
vertical axes clearly show the superiority of the new model.

traffic intensities, except some measures in [3] in some special cases.

Extensive numerical experiments [4] verify these conclusions for apparently
all C2.

4. CONCLUSION

In this paper a new approximation scheme has been presented for modelling
the M/PH/1 queuing system. The scheme is straightforward to implement
and is computationally much more efficient than solving a truncated version
of the C-K equations for a given level of accuracy. The advantages of the new
scheme in heavy traffic and for modelling PH service time distribution with
a large number of phases has been identified.

The new model gave steady state results which were within 4.3% of the
correct value for modest values of K and this can be improved upon if re-
quired (simply increase K). The errors arising in the approximation during
the transient period were smaller than the other diffusion approximations dis-
cussed in the literature. The success of the new scheme has been verified by a
large range of numerical experiments of which only a small sample have been
presented in this paper — the details to appear in the PhD thesis of Gao [4].

The use of hybrid schemes of the type described in the paper has easy
extension to any systems in which a diffusion approximation can be applied to
a system with phase type distributions. For example multiple server systems
should not pose any difficulties. The real value of the new model is expected
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Table 2.
Comparison of the maximum absolute error in L(t) (M/E3/1 system)
p K Am Ap | P K Am Ay
F 0.50 0.265 303.341 | F 0.95 235.747  248384.170
D 0.50 0.167 21.939 | D 0.95 0.242 17.887
N 0.50 2 0.003 1.087 | N 0.95 2 0.217 1.673
0.50 3 0.006 0.695 0.95 3 0.162 1.248
0.50 4 0.004 0.433 0.95 4 0.135 1.040
0.50 5 0.002 0.220 0.95 5 0.117 0.904
0.50 6 0.001 0.103 0.95 6 0.103 0.794
0.50 0.95 7 0.091 0.698
0.50 0.95 8 0.080 0.612
0.50 0.95 9 0.070 0.536
0.50 0.95 10 0.061 0.467
0.50 0.95 11 0.053 0.406
0.50 0.95 12 0.046 0.351

F:=Filipiak, D:=Duda, N:= New Model

to be in the analysis of problems in which the queuing system is subject to
a Poisson arrival process with time varying mean. Initial experiments in this
area are proving very encouraging.
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Masinio aptarnavimo sistemos M/PH/1 aproksimavimo peréjimo
periodu naujas modelis

H. Gao, M.A.M. Lynch

Straipsnyje pateikta efektyvi masinio aptarnavimo sistemos M/PH/1 aproksimacija, kuri
gaunama naudojant daugumos buseny tikimybiy difuzine aproksimacija. Sios aproksimaci-
jos privalumas tas, kad gaunami tikslesni rezultatai, negu naudojant jprastines difuzines
aproksimacijas, tiek esant maziems, tiek dideliems paraiSky intensyvumui. Be to, pakanka
maZiau skai¢iavimy. Sios naujos aproksimacijos tikslumas peréjimo busenoje parodomas
lyginant sistemos M/PH/1 sprendinius su sprendiniais, kurie gaunami naudojant jprasting
difuzing aproksimacija.



