MATHEMATICAL MODELLING AND ANALYSIS
VoLUuME 6 NUMBER 2, 2001, PAGES 192-198
© 2001 Technica

ANALYSIS OF GENERALIZED MULTISTEP
ADAM’S METHODS BY DEGENERATE
MATRIX METHOD FOR ORDINARY
DIFFERENTIAL EQUATIONS

T. CIRULIS, O. LIETUVIETIS

Institute of Mathematics of Latvian Academy of Sciences
and University of Latvia

Akademijas laukums 1, Riga LV-1524, Latvia

E-mail: cirulis@lanet.lv ojarsl@lanet.lv

Received October 1, 2001; revised October 24, 2001

ABSTRACT

Adam’s methods in the multistep mode are considered by means of general schemes of
the degenerate matrix method. The stability function for these methods is computed by
the residue theory on the complex plane. Performance of uniformly and non-uniformly
distributed nodes in the standardized interval is compared.

1. INTRODUCTION

The degenerate matrix method (DM method) is a special computing scheme
for numerical solutions of initial values problems of ODE. It is analyzed in the
literature, for example, in [1,2]. DM methods are based on the use of matrices
of two types: matrices for derivatives Ay which are always degenerate and/or
their pseudo-inverses By at the fixed system of N nodes on the standardized
interval. DM-method in the one step mode was analyzed in [3]. Now we will
investigate an application of ones in the multistep mode. Some of DM methods
in the multistep mode which use only of last row of A or the last row of B
were also analyzed in [4]. Now we will investigate Adam’s methods which can
be very simply constructed using two rows of pseudo-inverse matrices By .
Generally these Adam’s methods depend on an arbitrary constant and have
non-uniformly distributed nodes in the standard interval [-1,1]. An application
of DM-methods in the mode of Adam’s schemes gives a simple possibility both
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to form these computing schemes and to analyze them. A stability of methods
is investigated separately using the function theory of complex variables as in
[4]. There are also considered different examples, where the stability domains
for different Adam’s methods in the case of uniformly distributed nodes with
ones for non-uniformly distributed nodes are compared.

2. FORMULATION OF PROBLEM AND COMPUTING
SCHEMES

The equation y' = f(¢,y) with the initial value y(to) = yo, where y, yo, f € R",
must be solved in the interval [tg,T]. We will use in the multistep mode a
step by step procedure based on applications of DM schemes. To this end it
is convenient each subinterval [t;,t; + H] to reduce to the standard interval
[-1,1] by means of the linear substitution

t=1t; +0.5H(z + 1). (2.1)

Here H which can be also depended on j is the length of the mold in the
Jj-th step, but (2.1) maps interval [—1,1] into [¢;,t; + H]. Therefore our main
attention will be devoted to solving the problem

H
yl = EF('Z.7y)7 y|z=71 =« (22)

in the interval z € [—1,1], but F(z,y) = f(t; + 0.5(H + 1),y);
a =y(t;). Let
1< < <...,<azn<zyp1 =1 (2.3)

be nodes of the standardized interval and

N

prn+2(2) = (2 — Dan11(2), avta(z) = H(SL’ — ) (2.4)
k=0

are polynomials. Let A2 be the matrix for derivatives according to nodes
(2.3) and By 2 — their pseudo-inverse defined by the equality

Byi2Any2 =Enyo —Ingo, (2.5)

where Enois the identity matrix, but all elements of Inyo are zeroes except
the first column consisting of 1’s. Elements b;;, of the matrix Byyo are

1 z: d
bik:,i[/ puea(Mdr N k01, N+, (26)
pN+2($k) zo T Tk
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where ¢, are arbitrary constants [3]. Applying two rows of By, with the
numbers ¢ = N + 1 and ¢ = m to the problem (2.2) leads to the equations

N+1
UN+1 =Y+ 5 > vk F (@, yr),
k=0
N+1
Ym = Yo + ? kz_o bm,kF(wkayk)a

and,after the subtracting, we obtain the scheme:

YN+ = Ym + L0 @k F(an, y), (2.7)
1 d
Ak == bN+1’k - bm,k = p’1v+i($k) I:fzm pN:—i(;k) - + C] ) (28)
where m is one of fixed numbers 0,1, ..., N and ¢ = ¢y41 — ¢, i an arbitrary

constant. The choice m = 0 in (2.7),(2.8) leads to the scheme analyzed in [4],
but one with m = N — to the generalized Adam’s schemes which depend also
on one arbitrary constant c:

N+1

YN+ = YN + o kz_o b F (2, yk), (2.9)
1 b opnya(r)dr
bp:=0b -b = . 2.1
k= bNt1,k — DNk D ea(@) [/zN P +c (2.10)

Choosing ¢ according to the equality by11 = 0 we obtain the following explicit
Adam’s scheme:

N
H
YN+ = YN+ o kz_:ong(wk,yk), (2.11)
1 /1 gn+1(7T)dT N
9k = , anv1(z) = | | (@ —zr). (2.12)
q§v+1($k) ey T — Tk Icl;[o

Another choices of ¢ lead to implicit schemes.

3. STABILITY FUNCTION FOR METHODS

We will define the first stability function R (2) := yn41/yo for the computing
scheme (2.7), (2.8) of Dalquist test problem

H\
yl = zY, y|z=zo =Y, <= T € (C7 (31)
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if ynyy1 is computed according to scheme (2.7), (2.8) and yo,y1,---,yn are
known as starting values. Applying the computations by the residues theory
of complex functions leads to the following result.

The stability function R;(z) for the computing scheme (2.7), (2.8) has a
representation:

exp(—zx
Ru(2) = expla(1 — )] — (2); T(2) = y ,
— ZGN+1
NN dtt N2 X g2
9(z) = ] Z - T , (3.2)
(N+2)! &= (N+3),  (N+1)! & (N +2)
where
k L
dy = Z’Yjsk—ﬁ Vi =/ ) pNyo(T)dT, (3.3)
§=0 T
and s; are coefficients of the Laurent series
1 T
_ —N-1 —j
—_— =T S;T R T > 1 34
DPN42(T) j;o J 7l (3.4)

The series in (3.2) are convergent in all complex z plane. In addition, they
present the asymptotic series for R;(z) when z — 0.

The proof of this representation (3.2) is similar to one in [4]. Using for the
test problem (3.1) the computing scheme (2.7),(2.8) we obtain

N
(1 —an41)R1(2) = exp[2(zm — T0)] + 2 exp(—220) Z ar exp(zzy), (3.5)
k=0
where
_ Qnta(z) _ " pnya(T) —prga(s)
o= S Qo) = /mm ) E dr+c.  (36)

Using for aj, the representations (3.6) and computing the sum in (3.5) leads
0 (3.2). The proof of (3.2) is completed.

For Adam’s scheme (2.9) and (2.10) we have the representation of the sta-
bility function R;(z) also in the form (3.2), but now the coefficients v; are
determinated by

Vi =/ ™ pnga(r)dr (3.7)

TN

instead of (3.3).
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Analogously we have representations for the second, third and further sta-
bility functions of generalized Adam’s methods in the following form Ry(z) :=
YN+2/Y0, R3(2) := yny3/yo. For example, in case o = —1,2, = zn, for
schemes (2.9), (2.10) we obtain the following functions

Ry (2) = exp(h2) B (2) = 91(2)¥(2), g1(2) = %
R3(z) = exp(hz)Ra(2) — g2(2)¥(2), (3.9)

_f 1+2b 2 by exp[z(zn_1 —zN + h)]
92(2) = (1—sz:) = 1—:1;N+1 -
R4(z) = exp(hz)R3(z) — g3(2)¥(2), (3.11)

(3.8)

; (3.10)

(1420 \° zby_i(1 4 zby)
g3(Z) - (1 — sz+1> + (1 — sz+1)2 eXp[Z(IL'N_l TN + h’)] +
-z exp[z(zn_2 — N + 2h)]. (3.12)
1-— ZbN+1

These results show that the first stability function R;(2) is an asymptotic
expansion of further stability functions R, (2) := yN+m /Yo, m = 2,3,... when
z — 0. Therefore, the inequality |R1(z)|] < 1 gives the stability domain
of Adam’s methods correctly only for small enough |z| or for small enough
length H of the mold.

4. NUMERICAL EXPERIMENTS

J—

Figure 1. The borders of instability Figure 2. The borders of instability
regions for three-step Adam’s methods. regions for six-step Adam’s methods.

We made some numerical experiments setting |R1(z)| = 1 with the aim to
obtain the borders of the stability regions for Adam’s methods.

Fig.1 shows the stability regions (left sides of curves) for three-step Adam’s
methods (N = 2) with uniformly distributed nodes (1) and for nodes as zeroes
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Figure 3. The borders of instability Figure 4. The borders of instability

regions for methods with uniformly dis- regions for methods with nodes as zeroes

tributed nodes. of Chebyshev polynomials of the second
kind.

Figure 5. The optimization by sam- Figure 6. The borders of stability re-
pling ¢ for Adam’s methods with uni- gions for six-step Adam’s methods ob-
formly distributed nodes. tained by numerical experiments.

of the orthogonal polynomials: Jacobi (2), Chebyshev of the second kind (3),
Legendre (4), Chebyshev of the first kind (5).

Fig.2 shows the corresponding results for six-step Adam’s methods (N = 5).

Fig.3 and Fig.4 show the borders of stability regions for three (N = 2), four
(N = 3), five (N = 4) and six (N = 5) step Adam’s methods with uniformly
distributed nodes and nodes as zeroes of Chebyshev polynomials of the second
kind respectively.

We also made some experiments choosing the values of the constant ¢ with
the aim to increase the stability domain of these methods.

Fig.5 shows the borders of stability regions obtained by the root condition
for characteristic equations of Adam’s methods with uniformly distributed
nodes in the cases: 1) N=2,¢=0;2) N=4,¢=0;3) N =4,¢= —0.017.

In the Fig.6 are shown the borders of stability regions obtained by numerical
experiments for the following test problem y| = 2uy; — (u® + v?)y2; yh = y1;
y1(0) = 1; 32(0) = 0 with two parameters u and v. There are three curves:
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for six-step Adam’s methods with uniformly distributed nodes (curve 1); with
nodes as zeroes of Chebyshev polynomials of the second kind (curve 2), and
of the first kind (curve 3).

5. CONCLUSIONS

e The inequality |R;(2)| < 1 with the first stability function R;(z) gives the
stability domain for generalized Adam’s methods (2.7) and (2.8) only for
small enough |z| or small enough length H of the mold.

e A choice of the mold with nodes as zeroes of classical orthogonal polynomial
for Adam’s methods leads to schemes having the stability domain greater
than one with the same number of uniformly distributed nodes.

e The special choice of constant ¢ in (2.7) and (2.8) can give both explicit
and implicit schemes. If ¢ = 0 the method has order of one higher than
order in the case when ¢ # 0. However, the special choice of ¢ can also lead
to the extension of the stability domain of methods.

e For Adam’s methods the length of mold H, the step A and the number of
nodes N + 2 in the mold are not independent. For example, H, h and the
number of Chebyshev nodes zy, = —cos(knw)/(N + 1),k =0,1,...,N + 1,
in the one mold are connected by inequality h < H sin? (kx)/(2N + 2).
Therefore, increasing of N implies rapidly decreasing of step h if the length
of the mold H is constant. Due to these reasons it is not possible by mul-
tistep Adam’s methods to obtain the solution with an arbitrary precision,
as was done by one step DM methods [1].
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Apibendrinto Adamso metodo analizé
T. Cirulis, O. Lietuvietis

Darbe nagrinéjamas daugiaZingsnis Adamso metodas. Jis formuluojamas kaip atskiras atve-
jis bendros iSsigimstanciy matricy schemos. Naudojantis rezidiumy metodu istirtas Adamso
metodo stabilumas. Palygintos stabilumo sritys, kai diskretieji mazgai yra pasiskirste toly-
giai ir netolygiai.



