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ABSTRACT

In this article a stationary problems with general nonlocal boundary conditions is consid-
ered. The differential problems and finite difference schemes for solving this problem are
investigated. Stability estimates are proved in the maximum norm and the non-negativity
of the solution is investigated. All theoretical results are illustrated by representative ex-
amples.

1. INTRODUCTION

During the last decade there has been a growing interest in the development
of numerical methods for solving problems with nonlocal boundary conditions
[2; 3; 4; 8; 9]. Let consider the parabolic equation

Ou 0

= (bl 0)5e) —aleut [, tw), £ € (01), t€(0,T] (L)

with the nonlocal boundary conditions
1
U(O,t) =% (QO(t)u(G/O(t)at) + / IBO(xat)u(wat)dx) + fO(t)at € (OaT]a (12)
0

1
u(1,t) = 71 (e (t)u(ar (), 1) +/0ﬁ1 (z, yu(z, t)dz) + f1(t),t € (0,T] (1.3)



Stationary problems with nonlocal boundary conditions 179

and the initial condition
u(z,0) = uo(z), = € [0,1]. (1.4)

We assume that p(z,t) > po > 0,0 < a;(t) < 1, ¢(z,t) 2 0, v = (v0,m) €
R% = {(70,7)7%0 = 0,7 > 0} and kernels ap, a1, By, f1 are known functions.

First nonlocal boundary conditions were formulated in the paper of Samars-
kii and Bitsadze [1]. They investigated an elliptic problem in the plane with
the nonlocal boundary condition for a segment on the boundary. For the linear
case of (1.1) with p(z,t) = 1,09 = oy = 0, Ekolin [2] proved the convergence
of the forward and backward Euler methods. In these schemes, the integrals
in the nonlocal boundary conditions are approximated by the trapezoidal rule.
The convergence of these methods is proved under the assumption that

’YO(|IBO|71) < ]-7 71('/81|51) < ]-7 (15)

where (-,-) denotes the standard inner product (f,g) = fol f(z)g(x)dx. For
the Crank-Nicolson method the convergence is proved under the assumption
that

V3

ollBoll +mllBull < == (1.6)

where || f|| := v/ ([, f)- Using Galerkin method Fairweather and Lopez-Marcos
[3] solved semi-linear parabolic problem with integral boundary conditions
ag = a1 = 0 under the assumptions

YollBoll <1,  mllbll <1 (1.7)

A domain Qg is defined by inequalities (1.5) or (1.7) and a domain Qp is
defined by inequality (1.6) are represented in Fig. 1 for §o = 81 = 1.

Our final aim is to estimate the solution of the parabolic problem by so-
lutions of appropriate stationary elliptic problems. This analysis will be pre-
sented in a separate article.

The purpose of this paper is to analyze differential and finite difference
problems for stationary problems with nonlocal boundary conditions. We
investigate how the existence of its solution depends on parameters vy and
~1. We find the domains 2 and ) in the IR?H where the unique solution exists
and this solution is nonnegative for nonnegative fo, f1, respectively. Further
we investigate the stability of the solution in the maximum norm with respect
to values fo and f;.
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2. DIFFERENTIAL STATIONARY PROBLEM

The stationary problem corresponding to parabolic problem (1.1)-(1.4) is gi-
ven by

d du

l(u) := —ﬁ(p(a:)a) +q(z)u=0, z € (0,1), (2.1)
u(0) = 7o (aou(ao) +/0 Bo(z)u(z)dz) + fo, ao € [0,1], (2.2)
w(l) = i (aruar) + /0 Bi(@u(z)dz) + f1, a1 €[0,1.  (2.3)

Let u be a classical solution, i.e. u € C?(0,1) N C'[0,1] for p € C'[0,1],

g € C[0,1] and kernels 8; € L;1(0,1). We denote ||-||; = (fo1 |-]9dz)'/9 the norm

in the space Lq(0,1) for g € [1,00) and || - [|oc = Vraisup ,¢(g1)| - | the norm

in the space Lo (0,1). For continuous functions u the norm ||ul|e = ||ullc-
Let us define linear functionals:

< ko, u >:= agu(ag) + /0 Bo(x)u(z)dz, (2.4)
< ki,u >:=aju(a;) + /1 Bi(z)u(z)dz. (2.5)
0

So we rewrite the problem (2.1)-(2.3) in the following way

I(u) =0,
u(0) = 0 < ko,u > +fo, (2.6)
u(l) =v < ki,u> +f1.

Proposition 2.1. If u; and us are solutions of boundary value problems

_%(p(x)%) + q1(z)u; =0, —%(p(x)%) + g2 (z)uz =0,
u1(0) = fo, u2(0) = go,
ur(1) = fi; uz(1) = g1,

respectively, and 0 < q1(z) < g2(2), 0 < g5 < f;,7 = 0,1, then
0 < uz () < ui(2).

Proof. We get estimates u; > 0,5 = 0,1, from the maximum principle. The
function u(x) = u1(z) — u2(x) satisfies the problem:

{ _%(P(x)%) +a(@)u = (@) — a1 (2)us,

uw(0) = fo—g0, w(l)=f1—g1.
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Figure 1. The domains Figure 2. The func- Figure 3. The func-
Qr, QrF and Q4. tions ¢o and 3. tions @g and P;.

Since (g2(z) — q1(z))ur = 0, fo—go = 0, fi — g1 > 0, then the inequality
u > 0 follows from the maximum principle. B

In order to investigate the nonlocal problem we will modify the method,
which was proposed in [9]. Let solve two auxiliary problems with classical
boundary conditions:

l((PO) =0, l((pl) =0,
a) 900(0) =1, b) $1 (0) =0, (27)
¢o(1) = 0; p1(1) = 1.

We get estimates 0 < ¢;(z) < 1,z € [0,1] (j = 0,1) from the maximum
principle for elliptic problems. From this principle follows that g is non
increasing function and ¢ is non decreasing function. From Proposition 2.1
we obtain 0 < @o(z) + ¢1(z) < 1.

Next we present some typical examples of functions ;(see Fig. 2).

Ezxample 2.1. Let coefficient ¢ = 0. It is easy to find solutions

_ [ap ' (s)ds _ JepT (s)ds
900(:”) = folp—l(s)ds’ 901('77) = folp—l(s)ds'

For p(z) = 1 + poz? we have functions (curves 1 in Fig. 2 are obtained for
po = 16)

_ arctan(,/poz) __arctan(,/poz)
Yo = 1- arctan(\/z?T;) P = arctan(\/z%) :

Ezample 2.2. Taking p =1 and ¢ = 0 we obtain functions (curves 2)
po(z) =1-=, ¢i(z)=u.

Example 2.3. For constant coefficients p = 1, ¢ = qo we obtain the following
functions (curves 3 for go = 4)

inh 1—2 inh z
po(z) = % p1(z) = Ssinyf;* .
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Ezample 2.4. For variable coefficient q(z) = qo(1 + goz?) and p = 1, we
obtain (curves 4 for go = 4)

22 erf T 22— erf T
po(a) = e /2(1 - I oy (x) = el D/2TWED,

We write the solution of problem (2.6) in the form

u = po(z)yo + 1(x)y1- (2.8)

Equation /(u) = 0 holds trivially. The boundary conditions provide the linear
algebraic system

(2.9)

Yo =0 < ko, 0 > yo + 70 < ko, 01 > y1 + fo,
y1 =7 <ki,00 >yo+m < k1,01 >y + fi.

Let define the unitary matrix I and matrices

Ky = (koo k01):<<k0;¢0> < ko, 1 >) G = (70 0)
’ ko ku1 <ki,p0> <ki,o1>)’ ) 0 m)’

Bo(x) = (po(@) ¢1(2)), Y := (y) , Fi= (ﬁ) :

%
Then we rewrite system (2.9) in the matrix form
AgY =F, (2.10)
where Ay := I — GKj and obtain
u=®y(z)Y. (2.11)

Example 2.5. Let take the following coefficients ag = a1 = 1,80 = 51 =
0,a0 =a €[0,1], a1 =b € [0,1], and p = 1,q = 0. Then we get matrices

_(l-a a _(1—vw@-a) —va
KO_(l—b b)’A°_<—71(1—b) 1—mb) -

Ezample 2.6. Let take the following coefficients ag = oy = 0, 8y = 6(a — ),
1 =12(z —b), a,b € [0,1], and p = 1,¢q = 0. Then we get matrices

Ko — —1+3a —-2+3a A — 1—7(=14+3a) —v(—2+ 3a)
07\ 2—6b 4—6b ) 0T\ —y(2-6b) 1—(4—6b)/"
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This example illustrates the case when kernels aren’t nonnegative and matrix
Ko can have negative elements. For a = £,%,2,2 and b = { we obtain
matrices

13 11 11 5
— 2 2 2 2 8 8 4
o= ) (G (G ) G

We will investigate solvability of system (2.10) and properties of its solution
(2.11) in Sec. 4.

= =

3. DISCRETE PROBLEM

In the domain [0, 1] we introduce meshes

Wh={0=zo <31 < - <3p =1}, W =" {20, 7,}
with step sizes h; = z; — ;-1,1 < 1 < n, hg = hpy1 = 0, and semi-integer
mesh

C‘J{L/2 = {xi+%|xi+% =(zi+zi41)/2, 0<i<n—1}

with step sizes hi+% = (h; + hi+1)/2, 0 < i < n. A mesh w will denote one
of the meshes @", w", GJ{‘/T We denote h = max h;. Let D(w) be a space of

<ign
real valued functions which are defined on the mesh w and D[0,1] is a space
of real valued functions on [0, 1].

We define the following mesh operators

Ziv1 — Z Ziyr — 2 1
(0Z);11 = %;Z eD@"), (02);i=-"2 2 7¢ D(w{l/z)-
k3

N

We introduce the following mesh norms:

n
1Zllon =Y _|Zilhiy 1, Z €D@"),  ||Z]loow = max|Z(z)|, Z € D(w).
=0

Remark 3.1. In this section we always use capital letters (e.g. U,V) for
functions defined on mesh w and letters (e.g. w,v) for functions defined on
interval [0, 1]. Further for simplification of notation we omit subscripts w or
[0,1] in norms and inner product. In this case we can use the same notation
for continuous and discrete norms, inner products and linear functionals, e.g.:

(u,v) :=/0 u(z)v(z)dz, (U,V):= ;UiVihH%,
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where u,v € D[0,1], U,V € D(@").

Let Z be a linear interpolant

Z@z)=2"%g 4T Ti1

h; h, Z; for x € [zi_1,z4].

We approximate problem (2.1)-(2.3) by the following finite-difference scheme:

L(U) := =6(PSU) + QU =0 in w", (3.1)

Uli=o = 70 (U (ao) + (Bo, U)) + fo, (3.2)

Ulizn = 71 (01U (a1) + (B, U)) + fi, (3.3)
where U, By, B; € D(@"), 0 < po < PeD(wl/z),O Q € D(wh).

Lemma 3.1. Let coefficients 39,51 € C?[0,1], p € C3[0,1], ¢ € C?[0,1].
Assume that problem (2.1)-(2.3) has a unique solution u € C*[0,1]. Let h =
const, (6P); = p'(x:) + O(h?), 5(Pipy + Pi_1) = p(z:) + O(h?), Qi = q(z:) +
O(h?). Then the truncation error for finite difference scheme (3.1)-(3.3) is
i = O(h?).

Proof. As well known [5] the truncation error for equation (3.1) is of order
O(h?). The integrals on the right hand side of expressions (2.2)-(2.3) are
approximated by the trapezoidal rule, thus quadrature error is bounded by
Ch? for functions in space C2[0, 1] [6]. Truncation error for linear interpolation
is O(h?). Then total truncation error is O(h?). B

Let us introduce linear functionals:

< Ko,U >:= agU(ag) + (Bo, V), (3.4)
< K1,U >:= oy U(ay) + (B, U). (3.5)

Then we rewrite problem (3.1)-(3.3) in the following form
L{U)=0
U|i:0 = < Ko,U > +fo, (3.6)
Uli:n =m < K1,U > +fi.
Proposition 3.1. If Uy and Uy are solutions of problems

—(S(P(SUl) + Q1U1 =0, —(5(P6U2) + Q2U2 =0,
Uili=o = fo, Usli=o = 9o,
Uili=n = f1; Usli=n = 1

and 0 < Q1(w;) € Q2(xi), 0< g5 < f4,7 = 0,1, then 0 < Us(z;) < Ur(x).
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Analogously to the differential case we solve two auxiliary discrete boundary
problems:

L(®0) = 0, L(®,) =0,
A) S Pylizo =1, B){ P1|i=0 =0, (3.7)
Po|i=n = 0; D1 |i=n = 1.

The estimates 0 < @;(z;) < 1, 7; € w" (j = 0,1) and monotonicity of these
solutions follow from the discrete maximum principle [5]. From Proposition
3.1 we get 0 < dso(.’E,) + dsl(.ill'z) <1

As examples we consider finite difference approximations of three problems
in Sec. 2. The graphics of discrete solutions are presented in Fig. 3.

Example 3.1. If Q = 0 then we obtain

¢ Sheihe/Py_1 & Do hu/Py )
o) = s w9 = s we
3 2

Example 3.2. Let coefficients be P = 1,Q = 0. Then we obtain
¢0(.’L’z) =1- i, 451 (a:z) = T;.

Ezample 3.3. Let coefficients be P =1,Q = go and h = 1/n = const. Then
we obtain

_ BN - AT

AL — A
45 — _ 2 1
DDV

&, =
T

where A1 2 = (24 goh® F \/qoh>(4 + qoh?)) /2.
We search the solution of finite-difference scheme (3.6) in the form
U = $o(xi)yo + P1(xi)y1. (3.8)
The boundary conditions provide linear algebraic system

Yo = Yo < Ko, %0 > 9o + v < Ko, 1 > 41 + fo,
yi=7 < K1,P0>yo+7 < K1,%1 >y1 + f1-

Let denote matrices

_ (<Ko P> <Ko, b1 > Y , ;
Ko (< Ki,90> < Ki,9 >) o Bl = (450(952) dsl(xz))'



186 R. é’iegis, A. gtikonas, 0. gtz'koniené, 0. Suboé
Then we rewrite the system (3.9) in the matrix form
A, Y =F, (3.10)
where A, := 1 — GK};, and obtain
U=2,(2)Y. (3.11)

Example 3.4. Let coefficients be ag = 0,04 = 1,41 = a,80 = 1,61 = 0,
P=1,Q =0and h = const. Then

K, — (1112 1/2), A, = ( 1—7/2 —70/2)'

a a —1(l—a) 1-—ma

4. ALGEBRAIC CONDITIONS FOR EXISTENCE AND
UNIQUENESS OF SOLUTION

In both differential and difference cases we get that solution of nonlocal prob-
lem is given by (see (2.11) and (3.11))

v(r) = ¥(2)Y, ¥(z):= (Y(z) ¥1()), (4.1)

where z € [0,1] or z € @", Yy(x) > 0, T1(z) > 0, To(z) + ¥1(z) < 1, and
vector Y satisfies a linear algebraic system (see (2.10) and (3.10))

AY =F, (4.2)
where A :=1—- GK and
ago  ao1 koo ko1 <, > < ,¥ >
A= K = = .
aip an ko ki <o, > <o, ¥ >
In this section we investigate the solvability of problem (4.1)-(4.2) and ob-
tain conditions, which guarantee that this solution is nonnegative. All results

are formulated in terms of matrix A. Let us use standard vector and matrix
norms

IYloo := max{|yo|, [y1]}, [|Allec := max{|ago| + |ao1l, |a10| + |a11]},
1Yl1 == |yo| + [91], Al := max{|ago| + |a1o, |ao1| + |a11]}

Then we have estimates
() |loc = ].H:lgg{lk’—’j(w)l} <L, (@)l = %(z) + ¥i(z) <1,
[Klloo = max{| <s¢;,% > | +] <201 > [} < max{<[s],1>},
7=0, J=Y,

||K||1 :]nzlgbiﬂ < J'507¢j > | + | < %lawj > |} < < |%0|71 >+ < |%1|71 >,
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where we get linear functional < |s|,¥ > from the functional < s, ¥ > by
using a module of the kernel.

Lemma 4.1. Let matriz A satisfies the condition det A # 0. Then there
exists a unique solution of nonlocal problem and

Al
| det A|

Al
|det A|

IFlloo, vl <

[olloo < (¥

Proof. For system (4.2) a unique solution exists if det A # 0 and in this case

1 a —a
Y = A~'F, where A~ = 1 o), 4.3
» Where det A (—a10 aoo (43)

Then we obtain the solution of nonlocal problem in the form
v(z) = ¥(z)A'F. (4.4)
Equalities (4.3) and (4.4) imply that

< o (2)lyo| + P (@) 1] < (Fo() + P1(@)) 1Y ]loo < 1A ]oolF oo,
< Po(@)lyol + Pr(@)lya] < 1Yl < NATHILIIF s

Then using equalities || A~ !|| = ||A]|1/|det A| and [|[A71]|1 = ||A]|co/| det A|
we complete the proof. B

Example 4.1. Let the coefficients p=1,¢ =0, fo = 0,00 = 0,01 = 1,01 =
b, 8o = 0,81 = 0. In this case boundary condition are the following

w(0) =0, u(l) =nula)+ fi.
Then Yo = ].—ZC, pY1r = and koo = klO = 0, klO = ].—b, kll = b. Thus

det A = 1 — b and we have singularity when b = 1. Then function u = Cx
is a solution for all C' € R if f; = 0 and there is no solution if f; # 0.

Lemma 4.2. Let det A # 0 and conditions

ago,a11 =0, ao1,a10 <0 for detA >0, (4.5)
ago,a11 <0, ap1,a10 20 for detA <0, )

are satisfied, then the solution v is nonnegative for nonnegative fo and fy.

Proof. Functions ¥; are nonnegative. Thus yo and y; must be nonnegative.
o, 00 —Go1  —Gi0
" det A’ det A’ detA’

We obtain such solutions for positive matrix A~!, i.

ai1

Al >0 m
det A
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Figure 4. The do- pigure 5. The singular curve § = 0 and domain € for

mains 2 and Q4 for patrices K with negative elements.
one nonlocal condi-

tion.

5. ANALYSIS OF SOLVABILITY CONDITIONS
In this section we study the dependence of problem (4.1)-(4.2) solvability on
parameters v and ~;. The main existence condition det A # 0 can be written
in the form

0 :=1— koo — 11k11 + Yoy1 det K # 0. (51)
We have a unique solution if y € Q := {y € R} | §() # 0}.

Corollary 5.1. Let § # 0. Then there exists a unique solution of nonlocal
problem and the estimate

[[o]loo < 16171 (1 + 2max{yo, n})(< [50],1 > + < [a], 1 >)[|F[ls.  (5.2)
holds, where s = 1, c0.
Proof. We proved in Sec.4 the estimate
I1Kls < < [50],1 >+ < |pa|,1>, 5 =1, 00.
Now we estimate the norms of the matrix I — GK:

11— GK||oo < 1+ max{y0, 71 }|Klloo,
11— GKly < 1+ (30 + 1)Kl

and using Lemma 4.1 we complete the proof. B
Corollary 5.2. Let 8 # 0 and conditions

, mkio

Yokoo <1, vk <1, ko1 20
0, ko

Yokoo =1, mkin 21, ~okos

for 6 >0, (5.3)

> 0
< 0 for <0, (5.4)
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Figure 6. The unbounded domains 2 for matrices K.

are satisfied. Then the solution v is nonnegative for nonnegative fy and f;.

Remark 5.1 [The case of one nonlocal condition|. Let consider the case
39 = 0(koo = ko1 = 0). Then the unique solution exists for v1k11 # 1 and

Qy ={(v0,m) | k11 <1, 11kio > 0} (5.5)

(see Fig. 4). For problem with one nonlocal condition(without integral) the
condition 1 k11 # 1 is the same as in [9].

If 49 = 0 then we get the same condition (5.5), i.e. on the ~v;-axe(or yo-axe)
we have the same situation as for one nonlocal condition.

The singularity points are on the hyperbola or on the line

k11 koo kioko1
_ _ _ . K ‘
(’Yo detK) (’Y1 detK) (et K)? or det K # 0, (5.6)
Yokoo + v1k11 =1 for det K = 0. (5.7)

The hyperbola degenerate into two lines when kgok11 = 0.

Remark 5.2 [Domain Q. for matrices with negative elements]. Such kernels
and matrices we get in Example 2.6. If ky; < 0 and k19 < 0 then g =7, =0
for @ > 0 and Yokoo = 1, v1k11 = 1 for 8 < 0 (see Fig. 5a,b). If ko; > 0 and
k1o < 0 then v =0, yokoo < 1 (see Fig. 5¢).

Remark 5.8 [Unbounded domains Q]. For some matrices the domain Q4
is unbounded (see Fig. 6a). For nonnegative matrices (see Fig. 6b,c,d) the
domain 24 is unbounded if kg9 = 0 or k11 = 0. In such cases the constant
14+ 2max{7o,71} in the right hand of the inequality (5.2) is unbounded. Thus
we must use more strong e-condition and domain Qf for v and 71:

O ={veQ [0 2e>0,00<e ,m<e '} (5.8)
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Figure 8. The domains QF . Figure 9. The domains 4 for matrices
K' >K” >o0.

Lemma 5.1. Let v € QF. Then there exists a unique solution v, and it is
nonnegative for nonnegative fo, f1 and

[0lleo < Cle; 50, 20)||F |5, s = 1,00, (5.9)
where C (e, 30, 0) = e (14 2e71)(< |s0|,1 > + < |3a1],1 >).

In many applications kernels for functional s¢; are nonnegative (a; > 0, 8; >
0,B; > 0). In this case the solution of problem (4.1)-(4.2) is nonnegative if
6 > 0O(see Fig. 6b,c,d and Fig. 7) and the domain where 6 > ¢ belongs to
Q, (see Fig. 8).

Lemma 5.2. Let § > ¢ > 0, 70 < €7, m1 < e7L. Then for nonnegative
kernels and nonnegative fo and fy there exists a unigue nonnegative solution
of nonlocal problem (4.1)-(4.2) and the estimate (5.9) holds.

Remark 5.4. Let matrix K' > K" > 0, i.e. Ak;; := k; — kj; > 0. Noting
that for ' > 0 the

0" — 0" = (1 — k1171)Akoo + 71 (1 — kooyo) Ak11
+ Y011 (AkooAk11 + ko1 Akio + Ako1kio + Ako1 Akig) = 0

we prove that domain Q] is larger than 2/, (see Fig. 9). If q(x) > g0 > 0
for the problem (2.1)-(2.3) (or @Q; > go > 0 for the problem (3.1)-(3.3))
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then ¥l(z) > ¥°(z) > ¥)(z),j = 1,2, and kf; > kfY > k;,i,5 = 0,1, ie.
Qf caf cal.

In Fig. 1 we have illustrated the domains Qg and p, that represented the
solvability conditions under assumptions (1.5)-(1.7) in the case fy = f1 = 1.
As we see in Fig. 1 the obtained domain 0} = {y € Ry | v+ < 2} is larger
than Qg or Qp.
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Stacionarusis uZdavinys su nelokoliomis krastinémis salygomis
R. Ciegis, A. Stikonas, O. Stikoniené, O. Subot

Straipsnyje nagrinéjamas uzdavinys su nelokoliosiomis krastinémis salygomis, susiejan¢iomis

sprendinio reik§me srities kra§tuose su sprendinio reik§me vidiniame tasSke ir/arba spren-

dinio integralu. Tiriamas diferencialinis uzdavinys ir baigtiniy skirtumy schema, aproksimuo-
janti §j uzdavinj. Gautos pakankamos salygos sprendinio egzistavimui ir vienaéiai. Surastos

salygos, kada sprendinys yra neneigiamas ir stabilus tolygioje normoje. Visi teoriniai rezul-

tatai iliustruojami atitinkamais pavyzdziais.



