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Abstract. In this paper, we prove some Tauberian remainder theorems that gener-
alize the results given by Meronen and Tammeraid [Math. Model. Anal., 18(1):97—
102, 2013] for Holder summability method using the notion of the general control
modulo of the oscillatory behaviour of nonnegative integer order.
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1 Introduction

Let u = (uy,) be a sequence of real numbers. Throughout this paper, the symbol
u, = O(1) means that (u,) is bounded for large enough n. The sequence of
the backward differences of (u,,) is denoted by (Au,,), where Au, = uy — Up—1
for n > 1, and Aug = ug for n = 0.

For a sequence (uy,),

un — o (u) = VO (Au), (1.1)

where oi (u) = = Y k—o Uk and Vi9(Au) = 7 Y oh—o kAuy,. The identity
(1.1) is called Kronecker identity.

Let the sequence V™ (Au) = (Vn(m)(Au)) be defined as follows: For each
integer m > 1 and for all nonnegative integers n,

V™ (Au) = oD (V=D (Aw)).

The classical control modulo of the oscillatory behaviour of (u, ) is denoted
by wg))(u) = nAuy,. The general control modulo of the oscillatory behaviour
of integer order m > 1 of a sequence (u,) is defined in [9] by

W™ (w) = Wi D () — oD (WD (w).
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Notice that the notion of the general control modulo of the oscillatory behavior
of integer order m > 1 of a sequence (u,) is a generalization of the classical

control modulo of (u,). For instance, if the sequence (w%o)(u)) is bounded then

the sequence (w,(ll) (u)) is bounded from the definition of general control modulo.

However, boundedness of the sequence (wgl)(u)) does not imply boundedness

of the sequence (wflo)(u)). For example, if we take the sequence (wfll)(u)) as a

constant sequence, then (wflo)(u)) is not bounded.

The concept of general control modulo of the oscillatory behavior of a se-
quence is used in some articles [6,7,8,20] in Tauberian theory. Actually, Canak
and Dik [6] obtained some Tauberian conditions in terms of the general con-
trol modulo of integer order to retrieve subsequential convergence of (u,,) from
the boundedness of (u,). Canak and Totur [7] gave some sufficient conditions
for the usual convergence and subsequential convergence of regularly gener-
ated sequences. Canak and Totur [8] proved a Tauberian theorem for Cesaro
summability methods, and Totur and Dik [20] gave some one-sided Tauberian
conditions for a general summability method using the general control modulo
of integer order. Moreover, various Tauberian theorems have been demon-
strated by Canak [1,2,3,4] and Canak et al. [10].

Summability theory and Tauberian theorems have been applied to the se-
quence of fuzzy real numbers. In the recent papers, some results have been
obtained for Norlund and Riesz summability methods of sequences of fuzzy
real numbers (see [5,21]).

A sequence (uy,) is said to be (C,1) summable to s if the limit

nlgrolo oM (u) =s
exists.
The Holder means of integer order of a sequence (u,,) are defined by

1 n (k—1)
g(k)(u)_{wrlzg‘—oaj (u), ZZ(l),

n
U,

for each integer k£ > 0 and for all nonnegative integers n and the sequence (u,,)
is said to be Holder, in short (H, k) summable to s if the limit

nl;r& o®(u) =s
exists. It can be verified that (H,0) summable of (u,,) means that (u,) con-
verges ordinary, and the (H,1) method of summability is equivalent to the
(C,1) method of summability.

The Holder summability method is regular, more generally, if a sequence
(uyn) is (H, k) summable to s, where k > 0 and k&’ > k for integer k, &/, then (u,)
is also (H, k') summable to s. However, the converse is not necessarily true.
For example, the sequence (u,,) = (3_7_,(j +1)(—1)7) is not (H,1) summable,

but
1 Z" 1
.[[ (2) = — (1) = —
nh—>oo In <u) n+1 = i (u) 4
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Let A = (A,) be a nondecreasing sequence of positive numbers such that
An — 00. A sequence (u,,) is called bounded with the rapidity (A,) (in short
A-bounded), if

with lim wu, = s. Let
n— o0

m* = {u= (uy,) ‘ li_{n un, = s and A, (u, —s) = O(1) }.

A sequence (u,) is called A-bounded by (H, k) method of summability, if
)\n(o,(lk) (u) —s) =0(1)

with lim, ay(lk)(u) = s. Shortly, we write u € ((H, k), m*).

It is known that a A-bounded sequence is also A\-bounded by (H, k) method
of summability. An example can be constructed to show that A-boundedness
by (H, k) method is not sufficient for A-boundedness of a sequence. Let (u,) =
Crhoo(=1D%), Ay = n + 1. Therefore lim,_ o) = 1 and we have
)\n(cf,(ll)(u) — 1) = O(1). That means u € ((H,1),m*). However the sequence
(> h_o(=1)%) is not convergent and this implies that u ¢ m*.

G. Kangro [11] introduced the concepts of Tauberian remainder theorems
using summability with given rapidity A. Tammeraid [18] introduced the
concept of \-convergent sequence, and showed the relationship between some
spaces of A-convergent sequences. Tammeraid [17,19] proved some Tauberian
remainder theorems for several summability method, such as Cesaro, Holder,
Euler-Knopp methods. Moreover, a number of authors represented some Tau-
berian remainder theorems (see [12,13,14]). Recently, Sezer and Canak [16]
have obtained several Tauberian remainder theorems for the weighted mean
method of summability using the weighted general control modulo of integer
order 1 and 2.

Meronen and Tammeraid [15] proved the following Tauberian remainder
theorems:

Theorem 1. Let the condition

A VO (Au) = 0(1)
is satisfied. If u € ((H,1),m*), then u € m>.
Theorem 2. Let the conditions

Aw@(u) = 0(1), AwP(u) =O0(1), A\, (o D (u) — s)=0(1)

are satisfied. If u € ((H,1),m™), then u € m*.

In this paper, we generalize Theorem 1 and Theorem 2 given by Meronen
and Tammeraid [15] to Tauberian remainder theorems for (H, k) summability
method. In our results, we use general control modulo order any integer m > 0
of the sequence (uy,).

Math. Model. Anal., 20(2):139-147, 2015.
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2 Preliminary Results
We need the following lemma to be used in the proofs of main theorems.
Lemma 1. For each integer m > 2 and for all nonnegative integers n,

w0 () = @ () — 1w, + 0(w)
m—1
. —1 X . X
3y (’” . )(oﬁz-”w) 260 (w) + 0D (w)),
: J
j=1

where (mj_l) =(m—-1)(m-2)...(m—7j)/4"

Proof. We establish the proof by the method of induction. For m = 2, we
have

WD (1) = () — o0 (D )
— )~ o) (@ () ~ o) (WO () ~ o (WO (w))
= ) (w) — 2V (Au) + V) (Aw)
= W) =+ 0D (W) + (s + 200 (w) — 02 ()

—l?0) ~ o + 00 + 317 () (080200 ()0 ).

Assume that the assertion is true for m = k. That is,
Wi (u) = WP () = up + o (u)

k—1
+ Z(—l)j (k ; 1) (a,(ffl)(u) — 20,(3)(11) + afzjﬂ)(u)). (2.1)

We must show that the assertion is true for m = k + 1. Namely, we establish
that

A ) = ) — 08 w)
a k

+ Z(—l)j( > (97 (u) — 200 (u) + o9V (w)).
; J

Jj=1

By the definition of the general control modulo of (uy), we get

WD () = w (u) — o) (W™ (u)). (2.2)

By the identity (2.1), we have
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n

Wi (1) = WO (u) — up + oM (u) = VO (Au) + oV (u) — o2 (u)
k—1

+ Z ( ) (¥ (u) — 26 (u) + o ¥ (u))

k—1
=X (F ) e - 20w+ o w)

k—1
+) (-1 (k B 1) (697D (u) — 209 (u) + o ¥V (u))

i=1 J
k—1

= (F ) ) - 200 + 0§ ).
=0

For the last sum on the right-hand side of the last identity, we have

k—1
Yy (’“ ; 1) (o)1) = 204 () + 0§ (1)
7=0

jzl J=1
k
:Z (lj_1> (07(11‘ Y(w) — 209 (u) + o0+ )
j=1
k1
-3 7 (520) 8w - 200w+ 0 w)

+ (=1)* (: - 1) (oD (u) — 200 (u) + o1 (w)).

Since (kzl) + (I;:i) = (];), the identity (2.2) can be written as

Wi () = W (W) — up + o) (u)

k
100 (BN (56D () — 260 () + 0G+D (4
Y 1)(j)(n (u) — 209 (u) + 0D ().

Thus, we conclude that Lemma 1 is true for each integer m > 2. O

3 Main Results
Theorem 3. Let the conditions

Mw@w) =0(1), Aw™(u) =0(1) (3.1)

Math. Model. Anal., 20(2):139-147, 2015.
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and

An (Uﬁlj)(u) —s) =0(1) for each integer j such that 2 < j <m (3.2)
are satisfied. If u € ((H,1),m?), then u € m™.

Proof. From Lemma 1, we have

Anw(™ (1) = A, <w§?> (u) — up + oV ()

+m1 ( D)ol ~ 20 0) + 000 )

.
—

=\ (w —s)+ (afll)(u) — )

S ( ]>«¢j”w>$2®WW)$+(%”Ww$O-

=1

<.

Rewriting the above equation, we have

An(Up — 8) = /\nw(o)(u) - )\nw(m) (u)

CCERRE S(E (”f7 -
—2)\n2(—1)j( )( D (u)—s)+A, Z ( )(og“)(u)—s).

Using (3.1) and (3.2) we get
An(un, —8)=0(1)+0(1) 4+ O(1) + O(1) + O(1) + O(1) = O(1).
Therefore we obtain v € m». O

Theorem 4. Let the condition
M V.9 (Au) = O(1)  for each integer j such that 0 < j <k — 1, (3.3)
be satisfied. If u € ((H,k),m"), then u € m>.

Proof. Suppose that u € ((H,k),m”). Taking j = k — 1 in (3.3), it follows
from the identity
oD (u) — o (u) = VI (Auw),

n

that

An (Uff_l)(u) — s) =\ (U,(Lk) (u) — s) + A (U%k_l)(u) - Uflk)(u))
=0(1)+0(1)=0(1).
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This implies u € ((H, k— 1),m>‘). Taking j = k — 2 in (3.3), we get
An (Uﬁbk D (u) — s) = An (07(11“2) (u) — aflkfl)(u)) + An (a,(bkfl)(u) — )
=0(1)4+0(1)=0()
from the identity
oD () = oD (w) = VI (Au).

Hence we have u € ((H, k—2), m)‘). Continuing in this way, we obtain that

€ ((H,1),m*). Taking j = 0 in (3.3), we get A\, (u, — o$? (1)) = O(1) from
the Kronecker identity. Thus we have

An(tn = 8) = A (un — Uﬁll)(u)) + )\n(a,(ll)(u) —5)=0(1)+0(1) = 0(1).
This completes the proof. O
Theorem 5. Let the condition
Mw) = O(1)  for each integer j such that 0 < j <k (3.4)
be satisfied. If u € ((H,k),m*), then u € m*.

Proof. By the definition of the general control modulo order 1 of (u,), it
follows

Anw® (1) = Xw® (u) — AotV (w(o) (w) = M@ (1) = X VO (Auw).

Taking j = 0 and j = 1 in (3.4), we get /\nVTSO)(Au) = O(1). From the
definition of the general control modulo order 2 of (u,), we obtain

Aaw? (1) = Aw D () = Ao (0D (w)).

Taking j =0 and j = 2 in (3.4), we obtain )\nVyfl)(Au) = O(1). Continuing in
this way, by Lemma 1, we obtain

)\nwr(f) (u) = A\p (w,(?)(u) — Uy + 07(11)(11)

k—1

+ i(—l)j (’“ ; 1) (0870) = 20(0) + 0§+

Jj=1

From the last identity, we get

k— 1

—An <§(1)J’ <k ; 1) v,gﬁ(Au)) .

Math. Model. Anal., 20(2):139-147, 2015.
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If taking j = 0,1,...,%k in (3.4), we obtain )\nV,gk_l)(Au) = O(1). The
conditions in Theorem 4 holds. Hence the proof is completed. O
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