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ABSTRACT

Two of the simplest general schemes of the degenerate matrix method in the multistep mode
are considered. The stability function for these methods is computed by the residue theory
in the complex plane. Performances of uniformly and nonuniformly distributed nodes in
the standardized interval are compared.

1. INTRODUCTION

The degenerate matrix method (DM method) is a special computing scheme
for numerical solutions of initial value problems of ODE. It is based on the use
of matrices of two types: matrices for derivatives Ay and their quasi-inverses
By at the fixed system of N nodes on the standardized interval [—1,1]. Ma-
trices for derivatives are always degenerate, but their quasi-inverses matrices
which are not unique for given Ay can be both degenerate and nondegen-
erate. Applications of DM-methods in the mode of Runge-Kutta schemes
give usually at once a whole set of methods which depend on the step H, on
the number N of nodes, on a choice of the nodes themselves, and also on IV
arbitrary constants. The special choice of constants and nodes on the stan-
dardized interval [—1, 1] gives a phenomena that the norm of the quasi-inverse
matrix By is the minimal possible, equal to 2, and does not dependent on the
number N. Therefore these schemes which depend on two parameters H and
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N have a property that the choice of the step ensures a convergence of the
iterations procedure for discretized equations, but the choice of number N -
only the precision. Therefore, DM-method with such schemes makes always
theoretically possibly to obtain numerical solutions with an arbitrary preci-
sion even for stiff equations. Such possibilities along with the general schemes
of DM-method were demonstrated in [1]. Unfortunately, stiff equations pos-
sessing very large Lipschiz constants require a long time for calculations in
this mode because of the necessity in this case to choose a very small step
H ensuring the convergence of iterations for discretized equations. Neverthe-
less, these schemes can be always applied to the finding of accurate starting
values for multistep methods. In practice, it is necessary to apply such meth-
ods which have an admissible lesser precision but require essentially a shorter
time for calculations. One of that possibilities is using of DM-methods in the
multistep mode. In this article we will analyze only two methods.

1. Applying for calculations only the last row of the matrix for the deriva-
tives Ay with arbitrary distributed nodes on the standardized interval [—1, 1].

2. Applying for calculations only the last row of quasi-inverse matrix By
with arbitrary distributed nodes on the standardized interval [—1,1]. Besides
of depending on nodes each method depends also on one arbitrary constant
which influences on the stability and precision of them.

A special attention is devoted to the discovering and investigation of sta-
bility functions of these methods. To this end methods which are similar to
ones in [2] are used mainly.

Aside from these two methods there exist also another computing schemes
in the multistep mode. For example, using two last rows of pseudoinverse
matrices it is possible to obtain and to analyze different Adam’s methods
simply.

2. SCHEMES DIRECTLY USING ONLY MATRICES FOR
DERIVATIVES

Let seek step by step the numerical solution for the initial value problem of
ODE

y’ = f(t;y)a y|t:a =ap, t € [aab]v (21)

where y,ag, f € +R™. Let’s choose a length H of the mold and 5 < t; <
... <ty < tny1 = to+H as nodes in the interval [to, to + H]. At the first step
we have typ = a. By means of the linear substitution z = (2t — 2¢to — H)/H we
reduce the problem (2.1) in [tg, to + H] to

H
y;’t = EF(x>y)7 y|x:_1 =« (22)
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in the interval [—1, 1], where F(z,y) = f(to + 0.5H(z + 1),y); a = y(to). For
the problem (2.2) the length of the mold is equal to 2 and the nodes are

—“l=zy<z1 <...<zny <2xnt1 =1. (2.3)

The problem (2.2) is called the problem on the standardized interval [—1,1].
Let Atz be a matrix for derivatives constituted with respect to nodes (2.3)
and let we know the solution of (2.2) at nodes g < 21 < ... < zy as the
starting values for the multistep method. Then

N+1
y(zn41) =y’ (1) = Y dy(aw), (2.4)

k=0
where 0 := dnt1,6, £ =0,1,..., N + 1, are elements of the last row of the

matrix Apn4o. Therefore, using formulas from [1]

Oni1 = % pr+2(@) = (@ = Dy (), (2.5)
N
_ r— _ Pria(1) o
qan () —kl;[l( k)> Ok = TETAENERE k=0,1,...,N, (2.6)

we obtain the following implicit equation for the vector y(zn4+1) = yn+1:

N
H
—ONf1yN+1 + EF(l“NH,yNH) = Z OkYks Yk = y(Tn), (2.7)
k=0
if yr,k=0,1,..., N, as starting values are known. The equation (2.7) can be

solved usually by the iterative loop. On the next step we suppose that x —
x+h, xx, = xp + h, where h = xn41 — zn, and again use (2.6) recalculating
y(zr + h) by interpolation formulas. The coefficients dx, k =0,1,..., N + 1,
and H do not change. Then the calculations are repeated.

Remark 2.1. 1. We choose the standardized interval [—1,1] since classical
polynomials whose zeroes we use usually as nodes have such domain by defi-
nition. In [2] the standardized interval [0, 1] instead of [—1, 1] is used, too.

2. Coefficients of matrix +Anxyo are preserved if we do not change the
length of the mold H. Otherwise we replace H with Hpey/Hoq in (2.2).

3. This computing scheme (2.7) is analogously with methods known in
literature, for example in [2], as the back differentiation formulas (BDF) with
nonuniformly distributed nodes in the general case.
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Figure 1. The borders of stability regions in the case of uniformly distributed nodes

Now we will investigate the stability of the method given by (2.7). To this
end we consider the Dalquist test equation in the standardized interval [—1, 1]

,  AH
V=59 Y1 =0,
having the precise solution
AH
y(x) = yoexplz(z +1)], z= 5 € C.

An application of the scheme (2.7) for (2.8) gives the equation

Figure 2. The borders of the stability regions for Chebyshev nodes

N

(2 = 0Nt1)YN+1 = Z kY-
k=0

(2.8)

(2.9)

(2.10)

Using (2.5), (2.6) and the assumption that y(z) is an analytic function we can
rewrite (2.10) in the form of residues since all nodes zx, k =0,1,..., N, are

simple zeroes of the polynomial pyia(z).

N
o W[ IO
(2 = 0n+1) Yo —pN+2(1)kZ:0R |:pN+2(£)(1—f)’ k}’
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where §(§) = y(€)/yo. Taking into account that the sum of residues on the
compactified complex plane is equal to zero, we obtain instead of (2.11)

= 50 e e o e ’TJ ;

We define the stability function R(z) by equality R(z) = yn4+1/yo or

Ao Pee@ fo T §E) os -
R = P e | e e e j }3
The computing of residues in (2.13) with §(&£) = exp[z(1 + &)] leads to
y(§) _ (2= dn41) exp(22)
res [ —teve | - Py (219
56  en() P & gt
s @€~ 1) } S TTvry A W

where (o) = a(a+1)...(a+k—1), (a)o:=1 and ¢ are coefficients of the
following Laurent series

pN+2(§)(§ -1) =& 32 gk’ €l >1 (2.16)

at £ = oco. In particular, we always have that ¢cg = ¢; = 1 always. Substituting
(2.14), (2.15) and (2.16) into (2.13) gives

p;v+2(1)ZN+2 exp z
(z = 0n+1)(N +2)!

R(z) = exp(2z) —

z X ek
+ + . (2.7
N+3 ,;(N+3)k] (217)
Since ¥(z) = exp(2z) — R(z) is an error function we have the representation

N+2 +0oo k

z
+
N+3 ,;2(N+3),c

B(2) = Pvya(1)z exp z

(2= n+1) (N +2)! (2.18)

By (2.18) we conclude that an order of the method is always N + 2, but the
error constant is
Pgo(D)

Pn = S ON (N +2)
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Example 2.1. There are some samples of the borders of the stability regions
for the function R(z) obtained by setting |R(z)| = 1.

1°. In the Fig. 1 borders of the stability regions for uniformly distributed
N =2,3,4,5 nodes in the standardized interval [—1, 1] are shown.

2°. In the Fig. 2 these borders for N = 3,5, 7 nodes as zeroes of Chebyshev
polynomials of the second kind are shown.

3°. In the Fig. 3 the borders of the stability regions for uniformly dis-
tributed nodes and Chebyshev nodes are compared in the case N = 5.

Figure 3. The borders of the stability regions: for uniformly distributed nodes - solid line,
for Chebyshev nodes - circles

3. SCHEMES USING ONLY THE LAST ROW OF PSEUDOIN-
VERSE MATRICES

For solving problem (2.1) we reduce again this problem to (2.2) in the stan-
dardized interval [-1,1]. Supposing that nodes are

—“1<zrp<r <...<zy<zyy1 =1 (3.1)

and denoting

N

pv+2(2) = (@ = Dans1(2), avii() = [] (@ —z), (3.2)
k=0

we can construct the pseudoinverse matrix B2 with respect to nodes (3.1).
Using only the last row of those matrices elements b;;, of which have represen-
tations given in [1] we obtain analogously with (2.7) the following computing
scheme

H H
YN+1 = 50N F(ani, yn+1) = go + > bkF(k, yr), (3.3)
k=0
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b= b1k = s [/ etk (34

Pni2 T — T

In particular,

bni1 =

1
PG {/xo gn+1(T)dT + c] , (3.5)
where ¢ is an arbitrary constant. An application of (3.3) to the problem (2.2)
is similar to the (2.7) if we assume again that yj as the starting values at
nodes zy, k=0,1,...,N, are known. Now we will investigate a stability of
the method represented by (3.3) and (3.4).

Let us consider the Dalquist test equation in the standardized interval
[_17 1]
HA\

Y =2y, Yly—y, = V0, 2= - € C. (3.6)

The precise solution of (3.6) is y(z) = yo exp[z(z — zo)].

Theorem 3.1. A stability function composed for the Dalquist test problem
(3.6) by means of the computing scheme (3.3), (3.4) and defined as R(z) =
YN+1/Yo has the representation

exp(—z) +3 X gt
= 1-—
R(z) = exp[z(1 — zo)] — [~ N+2 12 N 13
N+1'Z N+2 3.7
where
k I
=3 e = [ Tl (3.8)
j=0 zo
and s; are coefficients in the Laurent series
1 X5
~N-2 j
— =z —=, |z| > L 3.9
pN+2(Z) ]2:; 2l | | ( )

In particular, so = 1. R(z) is a meromorphic function of the complex variable
2.

Proof. The solution yx4+1 obtained by (3.3) is

N
(1- sz+1)yZ+1 =142 bglew), (3.10)
0 k=0
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where §(zr) = (y(z1))/yo and because of (3.4)

1
bk — QN+1(~TI<:)’ QN—i-l(xk) — / IM +c. (311)

Pvio(@r) T — Tk

Here Q n+1(s) is a polynomial of degree N + 1 with respect to s. One has the
representation

Qn+i(s) = /1 pv42(T) ZPNea(®) g (3.12)

T—S

Now we rewrite (3.10) in the form

(1- sz+1)yZ+1 =1+ zZRes [M,mk] . (3.13)

P PN+2(T)

Applying the property that the sum of residues in the compactified complex
plane is equal to zero we obtain

. UN+L _ _ peg | @NH(DIT) ] 5 [@Na (D)
(1= s B2 =1 = s | LB 1| oy [ 0200 o
(3.14)
Substituting §(7) = exp[z(T — zo)] we can compute the residues in (3.14):
Quarmesletr—ao)] 1 _ .
Res P a(7) ,1] = exp[z(1 — zo)]bn+1, (3.15)
Qi el —z)] 1 _ o Qi) exp(e)
Res[ pn+2(T) ’OO} = exp(~oz)R pr+2(T)
(3.16)

Now we will calculate the Laurent series with |7| > 1 of the function

Qnyi(T) /1 pN+2(€) 1} d¢ c
NTIN T _ + .
PN+2(7) PN+2(7) £—7  pNny2(T)
Using the expansion (£ — 7)1 = — E %0 EFr k=1 we obtain
QN+1 T) = 1- mHl —N-3 = dy, —N-2 ~ Sk
- Sk ok 1
PN y2(T) z;) k+ 1)rk+1 4 g Tk et kX:;) Tk (3.17)

where dj, and s, are determined by (3.8) and (3.9). Therefore,

Qni1(7) exp(27) oo}
pnta(r)

zRes = —expz + exp(zo2)+
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de QZ
N+2' N+3 N-I-l' N+2

(3.18)

Using (3.14), (3.15) (3.16) and (3.18) we obtain (3.7). W

\\ '

Figure 4. The borders of stability regions for the pseudoinverse matrix with Chebyshev
nodes

Corollary 3.1. 1. If ¢ # 0 the method (3.3) by an arbitrary choice of nodes
xz, has the order N + 2.

2. If ¢ = 0 it is possible to increase the order of the method (3.3)- (3.4),
specially choosing nodes zj in [—1, 1] so that the equalities

dy, Echsm,j =0 for m=0,1,...,s. (3.19)
j=0

are satisfied. Then the order of the method is N + s + 3. The maximal s can
be N —

3. Let zg = —1 and ¢ = 0. Since 1 = s¢ # 0 the maximum of the order can
be reached by (3.8) if

1
/ ™1 —)gn(r)dr =0, k=0,1,...,N—1. (3.20)

-1

It means that the nodes z; must be taken as zeroes of polynomial Jacobi
P](Vl’l) (z) in the interval [-1,1]. In this case the order of the method is 2N + 2.

Example 3.1. There are some samples of the borders of the stability regions
for the procedure (3.3), (3.4) with g = —1 and ¢ = 0 using R(z) defined by
(3.7).

1°. In the Fig.4 the borders of stability regions for N = 2,5,7 nodes as
zeroes of Chebyshev polynomials of the second kind are shown .
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Figure 5. The borders of stability regions: 1) pseudoinverse matrix with uniformly dis-
tributed nodes (crosses); 2) pseudoinverse matrix with Chebyshev nodes (circles); 3) matrix
for derivatives with Chebyshev nodes (solid line)

2°. In the Fig.5 the borders of stability regions in the case N = 5 are
compared.

Remark 3.1. Unfortunately, the functions R(z) give only a part of instability
domain for the methods because the inequality |R(z)| < 1 in general is not
sufficient for the stability.
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DAUGIAZINGSNIS ISSIGIMUSIOS MATRICOS METODAS
PAPRASTOSIOMS DIFERENCIALINEMS LYGTIMS

T. Cirulis, D. Cirule, O. Lietuvietis

Pasiulytas skaitinis metodas paprastosioms diferencialinéms lygtims su pradinémis saly-
gomis spresti. ISvestinéms aproksimuoti taikoma matrica, kuri néra reguliarioji. Tai paaisk-
ina metodo pavadinima. Metodo stabilumui tirti taikoma kompleksiniy funkcijy rezidumy
teorija. ISnagrinéti atvejai, kai nepriklausoma kintamajj atitinkantys skai¢iavimo schemos
mazgai yra paskirstyti intervale kaip tolygiai, taip ir netolygiai.



