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Abstract. In this paper we consider the existence of almost homoclinic solutions
for the following second order perturbed Hamiltonian systems

ü− L(t)u+∇W (t, u) = f(t), (PHS)

where L ∈ C(R,Rn2

) is a symmetric and positive definite matrix for all t ∈ R, W ∈
C1(R×Rn,R) and ∇W (t, u) is the gradient of W (t, u) at u, f ∈ C(R,Rn) and belongs
to L2(R,Rn). The novelty of this paper is that, assuming L(t) is bounded in the sense
that there are two constants 0 < τ1 < τ2 < ∞ such that τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2
for all (t, u) ∈ R × Rn, W (t, u) satisfies Ambrosetti–Rabinowitz condition and some
other reasonable hypotheses, f(t) is sufficiently small in L2(R,Rn), we obtain some
new criterion to guarantee that (PHS) has at least two nontrivial almost homoclinic
solutions. Recent results in the literature are generalized and significantly improved.

Keywords: homoclinic solutions, critical point, variational methods, mountain pass theo-

rem.
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1 Introduction

The purpose of this work is to deal with the existence of almost homoclinic
solutions for the following second order perturbed Hamiltonian systems

ü− L(t)u+∇W (t, u) = f(t), (PHS)
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where L ∈ C(R,Rn2

) is a symmetric and positive definite matrix for all t ∈ R,
W ∈ C1(R×Rn,R) and ∇W (t, u) is the gradient of W (t, u) at u, f ∈ C(R,Rn)
and belongs to L2(R,Rn). As usual, we say that a solution u(t) of (PHS) is
almost homoclinic (to 0) if u ∈ C2(R,Rn) such that u(t)→ 0 and u̇(t)→ 0 as
|t| → ∞. If u(t) 6≡ 0, u(t) is called a nontrivial almost homoclinic solution.

If f(t) ≡ 0, then (PHS) reduces to the following Hamiltonian systems

ü− L(t)u+∇W (t, u) = 0. (HS)

For this case, an almost homoclinic solution is a homoclinic solution. It is
well known that the existence of homoclinic solutions for Hamiltonian systems
and their importance in the study of the behavior of dynamical systems have
been recognized from Poincaré [19]. They may be “organizing centers” for the
dynamics in their neighborhood. From their existence one may, under certain
conditions, infer the existence of chaos nearby or the bifurcation behavior of
periodic orbits. In the past thirty years, with the works of [17] and [21] vari-
ational methods and critical point theory have been successfully applied for
the search of the existence and multiplicity of homoclinic solutions of (HS).
Assuming that L(t) and W (t, u) are independent of t or periodic in t, many
authors have studied the existence of homoclinic solutions of (HS), see for in-
stance [2, 4, 5, 6, 9, 18,21,33] and the references therein.

If L(t) and W (t, u) are neither autonomous nor periodic in t, this problem is
quite different from the periodic systems, because of the lack of compactness of
the Sobolev embedding, such as [1,4,7,13,17,22] and the references mentioned
there. It is worth pointing out that to obtain the existence of homoclinic
solutions of (HS), the so-called global Ambrosetti–Rabinowitz condition ((AR)
condition) on W (t, u) due to Ambrosetti–Rabinowitz (e.g., [3]) is assumed in
the works mentioned above. Explicitly,

(W1) there is a constant θ > 2 such that, for every t ∈ R and u ∈ Rn\ {0},

0 < θW (t, u) ≤
(
∇W (t, u), u

)
,

which implies that W (t, u) is of superquadratic growth as |u| → ∞, where (·,·) :
Rn×Rn → R denotes the standard inner product in Rn and subsequently | · | is
the induced norm. In addition, to verify (PS) condition for the corresponding
functional of (HS), the following coercive assumption on L(t) is often supposed:

(L) L ∈ C(R,Rn2

) is a symmetric and positive definite matrix for all t ∈ R
and there is a continuous function α : R → R such that α(t) > 0 for all t ∈ R
and (L(t)u, u) ≥ α(t)|u|2 and α(t) → ∞ as |t| → ∞, which indicates that the
smallest eigenvalue l(t) of L(t) is coercive, i.e.,

l(t)→∞ as |t| → ∞, (1.1)

where l(t) = inf |u|=1(L(t)u, u). More recently, many authors discussed the
existence of homoclinic solutions of (HS) under some superquadratic conditions
on W (t, u) which are weaker than (AR) condition, see for instance [16,27] and
the references listed therein. Furthermore, in mathematical physics, it is of
frequent occurrence in (HS) that the global positive definiteness of L(t) is not
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satisfied. In [6], for the first time, the author considered this case and obtained
the existence and multiplicity of homoclinic solutions of (HS), in terms of one
type of coercive condition on L(t), which has been improved in recent papers
[26, 29, 32] by introducing some coercive conditions different from (1.1) (these
coercive conditions are used to obtain the corresponding compact embedding
theorem), when W (t, u) is superquadratic as |u| → ∞. However, different types
of coercive conditions on L(t) mentioned above do not seem to be natural and
are restrictive. For example, if L(t) = τIn (where τ > 0 is a constant and
In is the unit matrix of order n), then it is not covered by the above coercive
conditions. In [13], the authors showed that the condition (1.1) can be removed
if L(t) and W (t, u) are even in t, which has been improved in [16]. Besides, if

L ∈ C1(R,Rn2

), without assuming that L(t) and W (t, u) are even functions in
t, the authors [14] obtained the existence of homoclinic solutions of (HS).

Compared with the literature available for W (t, u) being superquadratic as
|u| → ∞, the study of the existence of homoclinic solutions of (HS) under the
assumption that W (t, u) is subquadratic at infinity is much more recent and
the number of references is considerably smaller, see recent papers [6,23,34,35],
where some types of coercive conditions on L(t) are also utilized. In addition,
the existence of homoclinic solutions for the case that W (t, u) is asymptotically
quadratic at infinity has also been investigated by many researchers in recent
papers [8, 28,36,37].

In present paper, we are interested in the existence of almost homoclinic so-
lutions for the perturbed Hamiltonian systems (PHS). Recently, many authors
have focused their attention on (PHS) and showed that (PHS) possessed at
least one nontrivial almost homoclinic solution. For example, see [10,15,25,31]
for the periodic systems and [11, 24, 30] for the nonperiodic systems. As far
as we know, only the author in [12] proved that (PHS) possesses at least two
almost homoclinic solutions, assuming that (L) holds, W (t, u) satisfies (W1)
and some other reasonable hypothesis on W (t, u) and f(t), see its Theorem 1.1.

As pointed out above, the coercive condition (L) is very restrictive. In
present paper we are mainly interested in the case that L(t) is bounded in the
sense that

(L)′ L ∈ C(R,Rn2

) is a symmetric and positive definite matrix for all t ∈ R
and there are two constants 0 < τ1 < τ2 <∞ such that

τ1|u|2 ≤
(
L(t)u, u

)
≤ τ2|u|2 for all (t, u) ∈ R× Rn.

In this case we assume that the potential W (t, u) satisfies (W1) and the
following condition:

(W2) there exists some positive continuous function a : R→ R with

lim
|t|→∞

a(t) = 0 (1.2)

such that ∣∣∇W (t, u)
∣∣ ≤ a(t)|u|θ−1 for all (t, u) ∈ R× Rn.
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For the statement of our main result, we also need some estimation on L2

norm of f . To this end, define

E =
{
u ∈ H1

(
R,Rn

)
:

∫
R

[∣∣u̇(t)
∣∣2 +

(
L(t)u(t), u(t)

)]
dt <∞

}
.

Then the space E is a Hilbert space with the inner product

(u, v)E =

∫
R

[(
u̇(t), v̇(t)

)
+
(
L(t)u(t), v(t)

)]
dt

and the corresponding norm is ‖u‖2 = (u, u)E . Let Lp(R,Rn) (2 ≤ p < ∞)
and H1(R,Rn) denote the Banach spaces of functions on R with values in Rn
under the norms

‖u‖p :=

(∫
R

∣∣u(t)
∣∣pdt)1/p

and ‖u‖H1 :=
(
‖u‖22 + ‖u̇‖22

)1/2
,

respectively. From (L)′, it is obvious that there exists β > 0 such that

‖u‖2 ≤ ‖u‖H1 ≤ β‖u‖, ∀u ∈ E. (1.3)

Letting % = sup{W (t, u) : t ∈ R, |u| = 1} and supposing that

(W3) % < 1
2β2 and f : R→ Rn is a continuous square integrable function such

that
lim
|t|→∞

f(t) = 0 (1.4)

and

‖f‖2 <
√

2

(
1

2β2
− %
)
, (1.5)

then we are in the position to state our main result.

Theorem 1. Under the assumptions of (L)′ and (W1)–(W3), (PHS) has at
least two nontrivial almost homoclinic solutions.

Remark 1. Note that in (L)′, we assume that L(t) is bounded. Therefore, the
smallest eigenvalue of L(t) does not tend to ∞ as |t| → ∞, i.e., L(t) need not
satisfy the various coercive conditions in the above mentioned papers. Thus,
the recent results in [11, 12, 24, 30] are generalized and improved significantly.
Meanwhile, compared to the case that f(t) ≡ 0, we do not require that L(t) is

even in t or L ∈ C1(R,Rn2

). Thus, the recent results in [6,13,14,16,26,29,32]
are generalized and improved significantly.

Remark 2. As mentioned above, the coercive conditions are used to establish
some compact embedding theorems to guarantee that (PS) condition (or the
other weak compactness conditions) holds, which is the essential step to obtain
the existence of homoclinic solutions of (PHS) via Mountain Pass Theorem.
In present paper, we assume that L(t) is bounded and could not obtain some
compact embedding theorem. Therefore, one difficulty is to adapt some new
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technique to overcome this difficulty and test that (PS) condition is verified,
see Lemmas 3 and 4 below.

Moreover, we must point out that the author in [11] only investigated almost
homoclinic solutions of (PHS) in the sense that u(t)→ 0 as |t| → ∞. Therefore,
in order to obtain the existence of almost homoclinic solutions of (PHS) as
usual, another difficulty is to verify that, under the conditions of Theorem 1,
u̇(t)→ 0 as |t| → ∞ as well, see Lemma 2 below.

The remaining part of this paper is organized as follows. Some preliminary
results are presented in Section 2. In Section 3, we are devoted to accomplishing
the proof of Theorem 1.

2 Preliminary Results

In order to prove Theorem 1 via the critical point theory, we firstly recall
some properties of the space E on which the variational framework associated
with (PHS) is defined. Denote by L∞(R,Rn) the Banach space of essentially
bounded functions from R into Rn equipped with the norm

‖u‖∞ := ess sup
{∣∣u(t)

∣∣ : t ∈ R
}
.

In view of (1.3) and Proposition 2.2 in [11], we have

Proposition 1. For every u ∈ H1(R,Rn),

‖u‖∞ ≤
√

2

2
‖u‖H1 ≤

√
2β

2
‖u‖. (2.1)

Remark 3. In fact, according to (1.3) and (2.1), the embedding E ↪→ Lp(R,Rn)
is continuous, where p ∈ [2,∞]. That is, for any p ∈ [2,∞] there is Cp > 0
such that

‖u‖p ≤ Cp‖u‖, ∀u ∈ E. (2.2)

Proposition 2. [10, Fact 2.1] Under the assumption of (W1), we have

(i) W (t, u) ≤W (t, u|u| )|u|
θ for t ∈ R and 0 < |u| ≤ 1;

(ii) W (t, u) ≥W (t, u|u| )|u|
θ for t ∈ R and |u| ≥ 1.

Now we introduce some more notations and necessary definitions. Let B
be a real Banach space, I ∈ C1(B,R) means that I is a continuously Fréchet-
differentiable functional defined on B. Recall that I ∈ C1(B,R) is said to
satisfy (PS) condition if any sequence {un}n∈N ⊂ B, for which {I(un)}n∈N is
bounded and I ′(un)→ 0 as n→∞, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0
and ∂Br denotes its boundary. Under the conditions of Theorem 1, we obtain
the existence of the first almost homoclinic solution of (PHS) by using of the
following well-known Mountain Pass Theorem, see [20].

Lemma 1. [20, Theorem 2.2] Let B be a real Banach space and I ∈ C1(B,R)
satisfying (PS) condition. Suppose that I(0) = 0 and
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(A1) there are constants ρ, α > 0 such that I|∂Bρ
≥ α, and

(A2) there is an e ∈ B \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)

)
,

where Γ =
{
g ∈ C

(
[0, 1],B

)
: g(0) = 0, g(1) = e

}
.

As far as the second one is concerned, we obtain it by minimizing method,
which is contained in a small ball centered at 0, see Step 4 in the proof of
Theorem 1.

3 The Proof of Theorem 1

Now we are going to establish the corresponding variational framework to ob-
tain almost homoclinic solutions of (PHS). To this end, define the functional
I : B = E → R by

I(u) =

∫
R

[
1

2

∣∣u̇(t)
∣∣2 +

1

2

(
L(t)u(t), u(t)

)
−W

(
t, u(t)

)
+
(
f(t), u(t)

)]
dt

=
1

2
‖u‖2 −

∫
R

[
W
(
t, u(t)

)
−
(
f(t), u(t)

)]
dt. (3.1)

Under the conditions of Theorem 1, we have

I ′(u)v =

∫
R

[(
u̇(t), v̇(t)

)
+
(
L(t)u(t), v(t)

)
−
(
∇W (t, u(t)), v(t)

)
+
(
f(t), v(t)

)]
dt

(3.2)
for all u, v ∈ E, which yields that

I ′(u)u = ‖u‖2 −
∫
R

[(
∇W

(
t, u(t)

)
, u(t)

)
−
(
f(t), u(t)

)]
dt. (3.3)

Moreover, I is a continuously Fréchet-differentiable functional defined on E,
i.e., I ∈ C1(E,R).

Lemma 2. Any critical point u of I on E is an almost homoclinic solution of
(PHS) such that u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

Proof. It is well known that E ⊂ C0(R,Rn) (the space of continuous functions
u on R such that u(t) → 0 as |t| → ∞). Now, if u ∈ E is a critical point
of I, we deduce from (3.2) that L(t)u−∇W (t, u) + f(t) is the weak derivative

of u̇. Recall that L ∈ C(R,Rn2

), W ∈ C1(R × Rn,R) and f ∈ C(R,Rn), we
thus have u is indeed in C2(R,Rn). In what follows, we show that u̇(t)→ 0 as
|t| → ∞ as well. We only consider the case that u̇(t) → 0 as t → +∞. The
other case is similar. In fact, if we denote

x(t) = u̇(t), (3.4)
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then, in view of (L)′, (W2) and (W3), it deduces that

ẋ(t) = ü(t) = L(t)u−∇W (t, u) + f(t)→ 0

as t→ +∞. That is, for any ε > 0, there exists R1 > 0 such that∣∣ẋ(t)
∣∣ < ε, ∀t ≥ R1. (3.5)

On the other hand, since u̇(t) ∈ L2(R,R), then x(t) ∈ L2(R,R). Therefore,
there is R2 > 0 such that ∫ +∞

R2

|x|2dt < ε2.

For any t > R = max{R1, R2}, there exists R̃ > R such that t ∈ [R̃, R̃+ 1] and∫ R̃+1

R̃

|x|2dt < ε2, (3.6)

which implies that there is at least t0 ∈ [R̃, R̃+ 1] such that∣∣x(t0)
∣∣ < ε.

Combining this with (3.5), we obtain that

∣∣x(t)− x(t0)
∣∣ =

∣∣∣∣∫ t

t0

ẋ(s)ds

∣∣∣∣ ≤ ∫ R̃+1

R̃

∣∣ẋ(s)
∣∣ds < ε, t ∈ [R̃, R̃+ 1].

Consequently, we have ∣∣x(t)
∣∣ < 2ε, ∀t ≥ R.

In view of (3.4), it is obvious that

u̇(t)→ 0 as t→ +∞. ut

Lemma 3. Under the conditions of Theorem 1, Φ′ is compact, i.e., Φ′(un)→
Φ′(u) if un ⇀ u in E, where Φ : E → R is defined by

Φ(u) =

∫
R
W (t, u)dt.

Proof. Assume that un ⇀ u in E, then there is some constant M > 0 such
that

‖un‖ ≤M and ‖u‖ ≤M

for n ∈ N. In addition, from (W2), for any ε > 0 there exists R > 0 such that∣∣∇W (t, u)
∣∣ ≤ ε|u|θ−1 and

∣∣∇W (t, un)
∣∣ ≤ ε|un|θ−1 (3.7)

for |t| > R.
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Consequently, for n large enough, we have∣∣(Φ′(un)− Φ′(u)
)
v
∣∣ ≤ ∫

R

∣∣∇W (t, un)−∇W (t, u)
∣∣|v|dt

≤
∫ R

−R

∣∣∇W (t, un)−∇W (t, u)
∣∣|v|dt

+

∫
|t|>R

∣∣∇W (t, un)
∣∣|v|dt+

∫
|t|>R

∣∣∇W (t, u)
∣∣|v|dt

≤ ε‖v‖∞ + ε

∫
|t|>R

|un|θ−1|v|dt+ ε

∫
|t|>R

|u|θ−1|v|dt

≤ εC∞‖v‖+ ε

∫
|t|>R

(
θ − 1

θ
|un|θ +

1

θ
|v|θ
)
dt

+ ε

∫
|t|>R

(
θ − 1

θ
|u|θ +

1

θ
|v|θ
)
dt

≤ εC∞‖v‖+ ε
θ − 1

θ

∫
|t|>R

(
|un|θ + |u|θ

)
dt+ ε

2

θ

∫
|t|>R

|v|θdt. (3.8)

Here we apply Young inequality:

ab ≤ ap

p
+
bq

q
, a, b > 0, p, q > 1 and

1

p
+

1

q
= 1.

Consequently, we obtain that∥∥Φ′(un)− Φ′(u)
∥∥ = sup

‖v‖=1

∣∣∣∣∫
R

(
∇W (t, un)−∇W (t, u), v

)
dt

∣∣∣∣
≤ εC∞ + 2ε(CθM)θ

θ − 1

θ
+ εCθθ

2

θ
,

which yields that Φ′(un)→ Φ′(u) as un ⇀ u, that is, Φ′ is compact. ut

Lemma 4. Under the conditions of Theorem 1, I satisfies (PS) condition.

Proof. Assume that {uk}k∈N ⊂ E is a sequence such that {I(uk)}k∈N is
bounded and I ′(uk) → 0 as k → ∞. Then there exists a constant C > 0
such that ∣∣I(uk)

∣∣ ≤ C and
∥∥I ′(uk)

∥∥
E∗ ≤ C (3.9)

for every k ∈ N, where E∗ is the dual space of E.
Firstly, we show that {un}k∈N is bounded. In fact, in view of (W1), (3.1),

(3.3) and (3.9), we obtain that

C +
C

θ
‖uk‖ ≥ I(uk)− 1

θ
I ′(uk)uk

=

(
1

2
− 1

θ

)
‖uk‖2 −

∫
R

[
W
(
t, uk(t)

)
− 1

θ

(
∇W

(
t, uk(t)

)
, uk(t)

)]
dt

+

(
1− 1

θ

)∫
R

(
f(t), uk(t)

)
dt
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120 Z.H. Zhang and R. Yuan

≥
(

1

2
− 1

θ

)
‖uk‖2 −

(
1− 1

θ

)
C2‖f‖2‖uk‖.

Since θ > 2, the boundedness of {uk}k∈N follows directly. Then the sequence
{uk}k∈N has a subsequence, again denoted by {uk}k∈N, and there exists u ∈ E
such that uk ⇀ u weakly in E, which yields that(

I ′(uk)− I ′(u)
)
(uk − u)→ 0 as k →∞. (3.10)

Moreover, according to Lemma 3, we have

Φ′(uk)→ Φ′(u) (3.11)

as k →∞. Consequently, combining (3.10), (3.11) with the following equality(
I ′(uk)− I ′(u)

)
(uk − u) = ‖uk − u‖2 −

(
Φ′(uk)− Φ′(u)

)(
uk(t)− u(t)

)
,

we obtain that ‖uk − u‖ → 0 as k → ∞ and prove that (PS) condition holds.
ut

Now we are in the position to give the proof of Theorem 1. We divide its
proof into four steps.

Proof. Step 1 It is clear that I(0) = 0 and I ∈ C1(E,R) satisfies (PS)
condition by Lemma 4.

Step 2 We now show that there exist constants ρ > 0 and α > 0 such that I
satisfies condition (A1) of Lemma 1. Let ρ =

√
2/β, where β is defined in (1.3).

Assume that u ∈ E with ‖u‖ ≤ ρ, then, by (2.1), it deduces that ‖u‖∞ ≤ 1.
In consequence, combining this with (i) of Proposition 2, we obtain that

I(u) ≥ 1

2
‖u‖2 −

∫
R
W

(
t,
u(t)

|u(t)|

)∣∣u(t)
∣∣θdt− ∫

∞

(
f(t), u(t)

)
dt

≥ 1

2
‖u‖2 − %

∫
R

∣∣u(t)
∣∣2dt− β‖f‖2‖u‖

=

(
1

2
− %β2

)
‖u‖2 − β‖f‖2‖u‖, ‖u‖ ≤ ρ, (3.12)

where % is defined in (W3). The inequalities (1.5) and (3.12) imply that

I|∂Bρ
≥ 1

β2
− 2%−

√
2‖f‖2 = α > 0.

Step 3 It remains to prove that there exists an e ∈ E such that I(e) ≤ 0 with
‖e‖ > ρ, where ρ is defined in Step 2. Choose ϕ ∈ E such that |ϕ(t)| = 1
for all t ∈ [0, 1]. In view of (3.1) and (ii) of Proposition 2, we have, for every
s ∈ [1,∞),

I(sϕ) =
s2

2
‖ϕ‖2 −

∫
R
W
(
t, sϕ(t)

)
dt+ s

∫
R

(
f(t), ϕ(t)

)
dt (3.13)

≤ s2

2
‖ϕ‖2 − sθ

∫ 1

0

W

(
t,
ϕ(t)

|ϕ(t)|

)∣∣ϕ(t)
∣∣θdt+ sC2‖f‖2‖ϕ‖ (3.14)

≤ s2

2
‖ϕ‖2 −msθ

∫ 1

0

∣∣ϕ(t)
∣∣θdt+ sC2‖f‖2‖ϕ‖, (3.15)
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where m = min{W (t, u) : t ∈ [0, 1], |u| = 1}. Since θ > 2, (3.13) implies that
I(sϕ) = I(e) < 0 for some s� 1 with ‖sϕ‖ > ρ, where ρ is defined in Step 2.
By Lemma 1, I possesses a critical value c1 ≥ α > 0 given by

c1 = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)

)
,

where Γ =
{
g ∈ C

(
[0, 1], E

)
: g(0) = 0, g(1) = e

}
. Hence there is 0 6= u1 ∈ E

such that I(u1) = c1 and I ′(u1) = 0. That is, the first nontrivial almost
homoclinic solution of (PHS) exists.

Step 4 From (3.12), we see that I is bounded from below on Bρ(0). Therefore,
we can denote

c2 = inf
‖u‖≤ρ

I(u),

where ρ is defined in Step 1. Due to the fact that I(0) = 0, so c2 < c1. Then,
there is a minimizing sequence {vk}k∈N ⊂ Bρ(0) such that

I(vk)→ c2 and I ′(vk)→ 0

as k →∞. That is, {vk}k∈N is a (PS) sequence. Furthermore, from Lemma 4,
I satisfies (PS) condition. Therefore, c2 is one nontrivial critical value of I
(note that in our case u(t) ≡ 0 is not a solution of (PHS)). Consequently, there
is 0 6= u2 ∈ E such that I(u2) = c2 and I ′(u2) = 0. That is, I has another
nontrivial almost homoclinic solution. ut
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