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ABSTRACT

In this paper are discussed mathematical models for the liquid film generated by impinging
jets. These models describe only the film shape under special assumptions about processes.
Attention is stressed on the interaction of the liquid film with some obstacle. The idea
is to generalize existing models and to investigate qualitative behavior of liquid film using
numerical experiments. G.I. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)] found
that the liquid film generated by impinging jets is very sensitive to properties of the wire
which was used as an obstacle. The aim of this presentation is to propose a modification of
the Taylor’s model, which allows to simulate the film shape in cases when the angle between
jets is different from 180°. Numerical results obtained by discussed models give two different
shapes of the liquid film similar as in Taylors experiments. These two shapes depend on the
regime: either droplets are produced close to the obstacle or not. The difference between
two regimes becomes larger if the angle between jets decreases. Existence of such two
regimes can be very essential for some applications of impinging jets, if the generated liquid
film can have a contact with obstacles.
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INTRODUCTION

Recently impinging jets are used as impinging-jet injectors for droplet gene-
ration [3; 4; 5]. The main characteristics of the impinging jets, which are
interesting for developers of corresponding devices, are the shape of the liquid
film and the droplet distribution. Fundamentals of the liquid sheet formed
during impinging of jets can be found in papers of Taylor [8; 9; 10; 11]. It
was shown there that the shape of a liquid film is dependent on the properties
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of symmetrical and antisymmetrical waves in such films. Taylor found con-
ditions for stationary antisymmetrical waves in a moving sheet. He derived
that waves, which can remain at rest, can be represented in special cases as
cardioids. A smart analysis of the wave instabilities in the liquid sheet was
done by N. Dombrowski and W.R. Johns [2]. They investigated also the size
of ligaments and drops created during such processes. More detailed literature
overview about earlier investigations regarding sheet form and droplet distri-
bution can be found in the sources [3; 5; 6]. A framework for the simulation
of the impinging jets was done by E.A. Ibrahim and A.J. Przekwas [3]. They
proposed prediction models of the film form, droplet size and distribution. In
[1] the methods of Dombrowski and Johns for fan-spray nozzles regarding to
droplet size are transferred to impinging jets. In [5] atomization character-
istics of sheets formed by laminar and turbulent impinging jets are studied
experimentally. They propose some semi-empirical model for the droplets. In
[6] an experimental study of the film thickness for impinging jets is presented.

In the practice there exist devices, where a contact of the liquid sheet with
some surfaces can not be avoided. Taylor [10] did analysis about the inter-
action of a wire with the liquid sheet. Other authors mainly are working
with free liquid sheets. Taylors results about interaction of the liquid film
with wires are very important. He proposed that the shape of a disturbed
liquid film by a small obstacle will be determined by antisymmetrical waves
which can remain at rest. He observed two possible development of the film
boundary, in dependence of the wire diameter and wetability.

It can be supposed that these results contain very deep physical phenomena,
which need to be investigated. These phenomena can have a significant influ-
ence on the functionality of real devices based on impinging jets. In the paper
there are investigated regimes where assumptions about Taylors cardioidal
waves are fulfilled.

Obstacle

26

Figure 1. Interaction of the liquid film formed by impinging jets with an obstacle. Point
B will also later show the position of obstacle.

The principal scheme of the droplet generation process by impinging jets
can be seen in Fig. 1. Two impinging jets with the radius R and with velocity
U build a liquid film. Point B characterizes the position of an obstacle. rg
is the distance from the obstacle to the stagnation point (see also Fig. 2).
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Droplets can be generated on the film boundary. Different shapes of the film
can be obtained in dependence of the angle between jets (26).

Taylor proposed mathematical models and did experiments for the case
6 = m/2. For the case § # 7/2 Taylor gave a suggestion for a model [11], but
it was not fully determined (more about this in Section 3.). A possible way for
solving the problem in the case of free liquid films proposed Ibrahim et. al. [3].
This model gives the shape of the liquid film, if parameters of liquid jets are
given: radius R, inclination angle 6, surface tension of the liquid o and density
of the liquid p;. The main part of this model is briefly described in subsection
3.1. Tt is important to note that Ibrahim’s et. al. model does not allow to
put an obstacle which would change the shape of the film. We propose to use
some ideas of Ibrahim et. al. for overcoming of the insufficient determination
of the model [11] and for further development of models given in [9]. It will
allow to account influence of an obstacle on the film shape for different angles
0. Taylor investigated interaction of the liquid film with a wire, if the angle
0 = 90°. He changed the diameter and the properties of wetability for the
wire and observed experimentally different behavior of the liquid film and
the droplet generation process. Taylor did not give mathematical models for
all possible situations, but for two processes the corresponding models were
proposed. One is so called cardioid model and it corresponds to the case, if
droplets are produced already in the vicinity of the obstacle. The boundary
of the liquid film in this case is described by two cardioids, which start from
the obstacle and turn in to a circle with some limiting radius (we will call it
as Ryaz)-

For the case when droplets are not produced in the vicinity of obstacle,
Taylor wrote equations [6, p. 13], but did not solve them. It is necessary to
note that these Taylor’s models were derived for the case § = 90°. Our aim
is to modify Taylor’s models for inclined jets ( § # 90°) and to do numerical
experiments. The main questions are:

e Can there exist two different solutions for the film shape in the case of
inclined jets, if we take as basis Taylor’s models for § = 90°?

e What properties can these solutions have?

If also in the case 8 # 90° similar effects are possible as Taylor observed, then
additional experimental and theoretical work on this area is required. Such
effects can significantly influence the quality of devices, which use impinging
jets in technological processes. We want to stress that our work has a quali-
tative character, because no direct contact to corresponding experiments was
possible. Obtained differential equations are solved numerically by using code
"DDASSL” from Lawrence Livermore National Laboratory.

1. MODELS FOR FILM SHAPE AT 6 = 90°

Taylor analyzed in his paper [10] development of perturbation in the thin
liquid sheets in the case when a vertical jet impacts on a flat impacter. The



330 A. Zemitis

flow direction is perpendicular to the impacter and it corresponds to impinging
jets, if the angle between jets is 20 = 180°. There is also more detailed
information given about the model. The most important assumptions are the
following: the flow in the film from the stagnation point is radial and potential
and the liquid velocity in the radial direction is equal to the velocity of the
jet U. The Fig. 1 shows that the droplet generation process is a complex 3D
process. The analyzed models will describe the shape of the liquid film in 2D
(as a view from above).

Boundary of the liquid film

(b Polar angle

O Stagnation point

Figure 2. The 2D view of the liquid film. Angle ¢ is the polar angle, but ¥ is angle
between the radius vector and the tangent to the boundary curve.

The boundary of the liquid film will be described in polar coordinates (7, @)
where the point O corresponds to the stagnation point. In the Fig. 2 the
boundary of the liquid film is shown as a curve around the stagnation point O.
The boundary will be represented as a function r = r(¢). Here an additional
angle is important: the angle ¥ between the radius vector and the tangent to
the boundary curve. It is well known that [11, p. 1392]:

Te (¢)
re(4)’

where 7' (¢) = g—;. This property of the tangent for curves in polar coordinates
will be used later several times. It is necessary to remember that in general
the model involves three angles: 8, ¢ and V.

The process of droplet generation depends on Weber’s number W, [3]:

tan¥(¢) = (1.1)

2
W, = @, (1.2)

where p;, o are density and surface tension of the liquid.

Taylor found that anti-symmetrical waves are responsible for spreading of
the disturbances and that the velocity of these waves are independent of the
wavelength (for low Weber’s numbers, We < 500). A very important property
is the following: if the sheet is moving with the velocity U, then the waves
will be at rest in space if lines of constant phase are at the angle ¥ to the
direction of flow, where:
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and h is the thickness of the liquid sheet. In fact the equation (1.3) is a condi-
tion when the capillary forces, which act at right angles to the boundary, are
equal to the normal component of inertial forces. Surface forces are growing
together with the radial distance from the stagnation point. The inertial force
remains constant, because the velocity along streamlines is constant and the
flow is assumed to be potential.

Taylor rewrote the equation in other form:

sin?0 — 200 Amor T
pth2 Pl UQ Rmaw ’

(1.4)

where () = 27rhU is the volumetric flow rate per second and Rya; =
piUQ /4wo. This form of equation allows better understanding of the model.
Here R4z is the limiting radius. For r > Ry,4, the liquid film can not remain
continuous (the surface forces will destroy the liquid film). The liquid film
can be continuous at the distance R, 4, from the stagnation point only if the
radius vector is perpendicular to the boundary curve ¥ = «/2 (this is true for
the circle with radius R,,4z). As Taylor observed experimentally, the bound-
ary of the liquid film becomes a circle, if there are no obstacles interacting
with the liquid film.

By using the formula (1.1) the angle ¥ can be excluded from the equation
(1.4) and a differential equation can be obtained:

dre ’ = RpazTe — 12 (1.5)
d¢ — dlmaz’e e- -
In polar coordinates (r, ¢) Taylor [9] found that cardioid curves r.(¢):

re($) = 229 (1~ cos( — do)), (16)

fulfill the equation (1.5), where ¢ is a constant, which represents the angular
position of an arbitrary point from which the wave is starting. As expected
from the previous discussion, there exists the additional solution:

TG = Rmaw- (1-7)

In Fig. 3, 8 cardioids with Ry, = 1 and different values for ¢¢ can be
seen. Also a circle with the radius 1 is drawn. It is important to stress that
each cardioid touches the circle if ¢,, = ¢ + 27n and n is an integer. At these
points for both curves (1.6) and (1.7) the derivatives are equal to zero:

re(én) = 0. (1.8)
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Figure 3. 8 cardioids (Rmaz = 1,¢0 = 7/6,27/6,...,87/6) and a circle with the radius 1.

From the mathematical point of view there is no unique way for continuation
of the solution if it touches the circle 7. = Ryq:. But it is well known that the
surface tension tends to minimize the curvature of free boundaries [12, pp. 110
—113]. Then it follows, that the solution of the equation (1.5) from some point
on the circle with radius R,,4, in flow direction physically can be continued
only by the formula (1.7) (if there are not any additional disturbances of the
liquid film).

If there is no interaction with obstacles, then the shape of the film is a
circle with the radius R,,.,. If there is an obstacle, then the shape of the
film consists of two parts. One part of the boundary is build by two limiting
cardioids, which connect the obstacle and the circle with radius R,,.;. The
other part is a segment of the circle with radius R,,,;. An example of the
solution (only one half of the curve is drawn) in the case of interaction with
an obstacle (point B) can be seen in Fig. 4 (solid line). Also in more general
case 6 # 90° Taylor [11] discussed the tendency of the liquid film to achieve
the unique critical curve which corresponded to ” a position at which an edge
could be established without using an obstruction to hold it in position” [7,
p. 13].

2. TAYLORS EDGE BY 0 = 90°

Taylor [10] has investigated interaction of the liquid film with some obstacle (a
wire). The result was very sensitive to the properties of the wire (wet-ability,
diameter). In some cases he observed experimentally that the properties of
disturbed film can be different. There exist such perturbations as on the one
part of the film boundary droplets are not produced. The radial flow from
the impact point changes on the film boundary direction, and the liquid flows
there in the tangential direction. At the same time this fact does not have
great influence on the other part of the film flow. As the result there exists
a point on the film boundary where two types of boundary meet each other
(on one side droplets are produced but on the other not). Mathematically
this point corresponds to the switching point between different models and
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we will mark in Figures this point by the letter ”A”. In Taylor’s figures of
experiments point A can be observed as an edge on the film boundary. Close
to this point the velocity vector has different directions.

Taylor’s model [10] for the liquid film, if droplets are not produced on the
corresponding boundary,it is interesting from two points of view:

e the model will be used later as a base for modifications if the liquid jets
are not perpendicular to the film plane,

e numerical solutions can be compared qualitatively with the Taylor’s obser-
vations.

2.1. Model for the film without droplets

In this subsection the Taylor’s model [10] is used describing the liquid film
boundary if droplets are not produced there. We will call it an extended
model.

The model involves parameters which are defined on the film boundary and
depend only on the polar angle ¢. Taylor has introduced a scalar parameter
q. The value qU characterizes the tangential speed of the liquid on the film
boundary. Taylor’s equations [10] are written here in the case if the obstacle
has a position at (rg,7) (point B):

9 (- $)g) = —cos¥,
49 R R 4T (2.1)
1- %smz@ = (7 - ¢)q m:w (d_¢ + 1) sin®.

where again (r.(¢),¢) are polar coordinates of the film boundary, Ry is
the limiting radius for liquid film (was explained in connection to the for-
mula (1.4)). By using (1.1) a system of ordinary differential equations for
(re(9),q(¢)) can be derived. It is convenient to have a system of first order
equations. Therefore an additional function w = dr./d¢ is introduced, and a
system for unknowns r.(¢), w(¢),q(¢)) can be written:

(dre _
do o
. . R r2 dw
w? + T’ﬁ — Riaate = ::w q(7r - ¢) w? _T_ rg (211)2 + szz —Te d_¢)7

d 2
(W—¢)£ —qz—\/wai%-
) (2.2)

The initial values are also proposed by Taylor [10], and in our case it means:

Rmaw -7
Te(ﬂ—) =To, ’ll)(ﬂ') =—To TO, q(’ﬂ') = m. (23)
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Form of the liquid sheet with two models (r0=OA4)

=== Extended
—— Standard

1.2

08[A .*
>0.6
0.4

0.2

Figure 4. Simulation results corresponding to Taylors experiments, if droplets are pro-
duced on the whole edge (solid line) or only on one part (dotted line between B and A
shows the part where droplets are not produced )

The problem (2.2) — (2.3) can be solved numerically for decreasing values of
¢ < w. The solution process must be realized stepwise for discrete values of
angle ¢,k = 0,1,..., because we have to control the values of r¢(¢g). If 7e
for some angle ¢ro becomes greater than R,,,5, then it is necessary to turn
back to the angle ¢yo_1. In this way by using different discretizations we can
estimate, with different accuracy, the switching point ¢4, which corresponds
to the point A. At this point r.(¢4) = Rmaz- If the polar coordinate of the
edge r. reaches R, then droplets are produced and remaining part of the
film has a constant polar coordinate ro = R4z for ¢ € (¢4,0). In the model
the parameter R,,,, contains all flow parameters and the solution depends on
the non-dimensional parameter ro/R,q,. Therefore it can be assumed that
R,,.z = 1 and the values of rg can be varied.

2.2. Results

In Fig.4 the results of simulations obtained by two models are presented.
Assume that: R,,,; = 1 and 19 = 0.4. The solid line corresponds to the
solution (1.6) — (1.7) and is referred as standard solution. Here only one half
of the symmetric solution is shown.

The standard solution shows the shape of the liquid film if droplets are
produced on the whole boundary.

The dotted line (noted as “extended” solution) corresponds to the model
from subsection 2.1, when droplets are not produced near the obstacle. The
part of the dotted line from the point B (x = —0.4) to the point A corresponds
to the solution of the problem (2.2) — (2.3). The continuation of the line is
described by r. = Rz = 1. Here the conditions for the droplet generation
are fulfilled. As it was mentioned before, Taylor observed experimentally two
types of the liquid film in dependence of properties of the wire. In the pa-
per [6,p.316] is written about the case when droplets are produced : "If the
obstruction causes the sheet to separate into streams bounded by two edges,
these edges will also assume the cardioid form provided that they immediately
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broke up into drops ...”. In the same paper [6, p. 317] Taylor wrote about
the case if droplets are not produced: "It will be noticed also that the form
of the edge is quite different from a cardioid which would have had greater
curvature”. The numerical results allow to compare both types of solutions.
The “standard” solution is formed by a part of a cardioid and a circle with
the radius R,,q;. The "extended” solution, where droplets are not produced,
is quite different from the cardioid and has a smaller curvature as a cardioid.
Visually this solution is similar to the first picture in Fig.III6 [6]. Unfortu-
nately it was not possible to obtain a quantitative comparison between the
experimental and simulated curves. But for the praxis it is very important to
know also the qualitative behavior of the disintegration process. Specially it
is important to know in the case 6 # 90°, because in this case the undisturbed
shape of the liquid film is not a circle.

3. NEW MODEL FOR 60 # 90°

In previous Section two different solutions for the shape of the liquid film were
obtained, if the angle 8 = 90°. Our aim is to answer the following question: is
it possible to get similar results in the case of inclined jets? For this purpose
mathematical models are necessary, which can work for inclined liquid jets
and allow to account an obstacle.

For free liquid films in the case of inclined jets there exists a model, proposed
by Ibrahim et. al. [3]. We will refer later to this model as to model-I. As
it was mentioned in the introduction, by using model-I obstacles cannot be
directly accounted. Therefore a modification of the model-I is needed. By
using the modification it would be possible to estimate the film shape in the
case when droplets are generated on the whole film boundary.

For the regime, when droplets are not produced near the obstacle, the
Taylor’s model (2.1) has to be modified.

3.1. Modification of the model-I

The aim now is to obtain differential equation, which allows to construct the
shape of the liquid film starting from any point close to the impact point. We
noted in the introduction that Taylor had ideas for the mathematical model
for the case of inclined jets [11]. In that paper Taylor noticed existence of an
limiting radius (dependent on inclination 8 and also on polar angle ¢). Outside
of this radius no one antisymmetrical wave can remain at rest (the liquid film
will be destroyed by capillary forces). Taylor proposed to find this dependence
experimentally. We will define the limiting curve by R,;q.(0,¢). In fact,
Ibrahim et. al. constructed a model [3], where the limiting curve R, (8, @)
is determined. It is necessary to remark, that the model [3] contains one more
assumption as necessary. If we use one assumption less and instead of this
apply the geometrical property (1.1), then it is possible to derive a differential
equation for the shape of the liquid film. Differential equation allows to start
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the boundary curve at any point. It will be referred to the modified Ibrahim’s
et. al. model as to model-IM.

The model-IM includes the greatest part of steps from model-I, which is
explained in [3]. Here this model will be only briefly described, because the
difference from the original one is very little: we account the geometrical
property (1.1). The main steps of the Ibrahim’s et. al. model (model-I) are
the following;:

e Estimation of the parameter 3, which depends on € (this angle characterizes
the inclination of the liquid jets):

e’ +1 1
cosf = (eﬂ _1> T+ /B (3.1)

e Radius of the circle r;, where the initial thickness of the sheet is defined
(R is the radius of the liquid jet):

= —. 3.2

i sind (3.2)

e The initial thickness of the sheet h;(¢,6) at the radius r; (¢ is the polar
angle in the film plane):

hi($,0) = BRsin(6)/(e® — 1)eP 1=/, (3.3)

e The thickness of the sheet h(r, ¢,6) at any radial r and angular position ¢
for different inclinations 6:

h(r, 6,0) = hi(9,0)". (3.4)
e Estimation of the thickness h.(#,6) of the edge can be done by using;:
20
he(,0) = s (3.5)
and also by (3.4):
T
he (¢a 9) = h(T’e, ¢7 0) = hz (¢7 0) 7’_’ (36)

where r, = r.(¢,0) describes the boundary of the liquid film.

This part of the model-I is sufficient for the estimation of the film shape.
For inclined jets all characteristic parameters of the liquid film depend on 6.
For shortening of terms this parameter will be omitted in the next expressions.
From previous dependencies it can be derived:

: _ 20(e = 1)re(9)
sin?(¥(¢)) = U BRES-5) (3.7)
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Similar as in (1.4) Ryae = Rmaz(9,0) can be introduced (we will omit 6):

. B pU2BR2eP(1-%)

Rmaz(¢) - QU(GB _ 1) (38)
Now the equation (3.7) can be rewritten in the form
.2 _ Te (¢)
sin*(¥(¢)) = 7Rmaz(¢). (3.9)

Formally in (3.7) there are two unknowns r.(¢) and ¥ = ¥(¢). But because
of formula (1.1) the following differential equation can be derived instead of
(3.9):

T2(¢) _ ~7°e(¢) ) (3.10)

(459)" 4+ r2(g) ez (@)

Equation (3.10) is an ordinary differential equation with respect to the
function 7. (¢). This function describes the shape of the liquid film, if droplets
are produced on the film edge due to anti-symmetrical waves. This differential
equation can be solved numerically, if an initial value for r, is given. Now the
model-IM is complete and it is possible to estimate the film boundary starting
from the position of the obstacle (point B). It is clear that the position of
the obstacle must be chosen not to be far from the stagnation point: ry <

Rimaa(9)-

3.2. The case if droplets are not produced

The most interesting question is — how to modify the Taylor’s model (2.2) —
(2.3) for the case if are not produced droplets close to the obstacle.

Taylor did his investigations about film edges, where no drops are produced
in the case # = 90°. An interesting question is about such effect for inclined
jets, but for solving of this problem the model (2.2) — (2.3) cannot be directly
applied. For Taylor it was important that the right hand side of the equation
(IT1.6) does not depend on the angle ¢. Now this is not true.

In Taylors investigation the parameter R,,,, is a constant. For inclined
jets a new parameter Ry,q, dependent on ¢ and # (3.8) is introduced. During
derivation of equations the steps from [10] are used as basis. Taylor takes as
an important reference the value r = R,,.,- Now other constant parameter
must be used. If § is fixed then r; is a constant (see formula (3.2)). On
the circle with radius r; the initial thickness of the liquid sheet h;(¢) (3.3) is
defined. For the derivation of the model there can be used the fact that the
function h;(¢, ) can be integrated in a simple way (we will omit 6):

/ (6)d6 = ~hi(@) + C. (3.11)
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where C' is some constant.
Assume that the position of the obstacle is (rqg,7), then the equation cor-
responding to Taylors equation (II1.7) can be written as follows:

m d
50(9) = a(m) g5 — hi(8)a = ~hi(9)eosT, (3.12)
Instead of the Taylors equation (I11.8) the following equation can be derived:
mU%q dv  d¢
29 — 2 in2¥ = pirimy g i —h; = 4 2.
o — PUh(9)sin T ha() ~ ha(m) (G + 50)

By using Rnas(#) and the definition of the angle ¥ the system of equations
can be formulated:

dre
e <m (3.13)
7"'(-I;?maav (¢) - Rmaw (W))q 'I‘g

dw
2 2 _
Br T Qw4+ r; — 7. _dq§) (3.14)

2 2 B
w41, — RypazTe, ¢ <,

(14(6) = () G = 1s(D)a = ~ha(8)y| 3" 56 <. (319

This is a system for three variables (re¢(#), w(¢),q(¢)). The initial values
are estimated in a similar way as in [10]

ro(m) = 1o, w(w)=—ro,/%’g)"‘°, q(w)=,/R’gz(77”(ﬂ‘)”’. (3.16)

This model can be applied while

™3

re(¢) < Rinag (¢) (3.17)

and it means that on the corresponding part of the edge the droplets are not
produced. In real simulations instead of the condition (3.17) some other con-
dition is used. The switching to other model is done if r¢(¢) > 0.99R oz ()
(criterion for the switching point A).

Assume that the switching of models has to be done at ¢ = ¢4. Then for
¢ < ¢4 the model based on equation(3.10) must be used. The corresponding
mathematical problem can be formulated as follows:
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% - _\/Rmaau (@)re(¢) —r2(¢), da>¢>0,  (3.18)
Te(¢a) = 0.99R 0z (h4). (3.19)

The model describes the boundary of the liquid film where droplets are
produced. To the complete model (3.13) — (3.19) will be referred to as model-
TI.

4. NUMERICAL EXPERIMENTS

In the previous Section three models for the shape estimation of the liquid film
were introduced. To remind, they were as follows. The model-I is the model
from the paper [3] and it is defined for free liquid films. The model-IM is a
modification of the model-I, which was done in previous Section. This model
allows to simulate the shape of the liquid film if droplets are produced on
the whole boundary for different inclinations §. With this model the position
of the obstacle can be accounted. The model-TI contains two parts and is
proposed for the case if droplets are not produced close to obstacle. During
the solution of the problem it is necessary to estimate the point A, at which
the other model must be started. The aim of numerical experiments is to
investigate different regimes for droplet generation in the case of inclined jets.
The most interesting question is: can the model-TI really produce a solution
which consists of two parts (existence of the similar edge A as in Fig. 4)? The
other question is: how do the parameters of liquid jets influence the position
of the point A?

= Model-I
w— Model-TI
= = Model-IM

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
_______
R ~

------
.....

0 L L L L 1
-0.01 0 0.01 0.02 0.03 0.04 0.05
x Iml

Figure 5. Simulation results with the model-TT, model-I and model-IM for inclined jets
(6 =70°).

In simulations the following parameters are fixed: U = 2.49m/s, 0 =
0.073N/m, R = 0.75mm. For the angle 6 the values: 8 = 70°, § = 60°
and § = 45° were chosen. The obstacle has the polar coordinate r.(7) =
0.5Rmqz(m,0).

The simulated results are shown in Fig. 5-7. Each figure contains 3 curves,
obtained by model-I, model-TT and model-IM.
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Figure 6. Simulation results with the model-TI, model-I and model-IM for inclined jets
(6 = 60°).
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Figure 7. Simulation results with the model-TI, model-I and model-IM for inclined jets
(6 = 45°). For given parameters the switching point A does not exist.

The corresponding curve to model-TT consists on two parts. First part of
the corresponding curve (the solid line between B and A) is obtained by the
modified Taylors model (3.13) — (3.16). At that part the droplets are not pro-
duced. The curve starts at the point B with 7¢(7) = 0.5Rmqz(7,8) because
of the obstacle. If at some ¢4 the radius r(¢4) > 0.99Rmaz(d4,8), then for
the rest the model-IM (3.18)- (3.19) is used. At the point A an edge is formed
(similar as in Taylors experiments in the case § = 90°).

In Fig.5 the results for 8§ = 70° can be seen. The solid line shows the
results obtained by the model-TI. For this § switching point can be very well
observed (point A). Both other curves produced by model-I and model-IM are
relatively close to the solid line. But it is necessary to stress that there are
large qualitative differences. Model-I and model-IM assume that droplets are
produced on the whole boundary of the liquid film. Model-TT proposes that
on the first part (the solid line between B and A) no droplets are produced.

If the angle § decreases (Fig. 6 corresponds to the angle § = 60°), then the
point A is moving to the right. It means that in some cases on large part of
the liquid film no droplets are produced. For given parameters the qualitative
and quantitative difference between two possible regimes becomes larger.

If the same model parameters are used as previously but only the angle 6
is changed to 45° (Fig. 7), then the model-TI cannot fulfill condition r.(¢$) >
Rz (¢) and the point A is not built. It means that droplets can be produced
only at the end of the film (the polar angle ¢ = 0). If the models are true,
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then in this case two very different regimes of the liquid film must be observed
(in dependence of wire properties):

e droplets are produced on the whole boundary of the liquid film,

e droplets are produced only on the end of the liquid film.

It is clear that in both cases spectra of generated droplets must be also very
different. From this point of view investigation of reasons for two different
regimes would be very important for real applications.

5. CONCLUSIONS AND OUTLOOK

Interaction of the liquid film with obstacles can lead to interesting phenomena
as Taylor already observed. Droplets can be generated near the contact point
with the obstacle or not in the dependence of properties of the obstacle . In
the paper some models for the shape estimation of the liquid film are proposed
and corresponding numerical solutions are obtained.

Two types of solution produced by Taylor’s model agree qualitatively with
Taylor’s experiments. If close to the obstacle droplets are not generated, then
the simulated boundary curve has an edge (point A in Fig. 4). The other
type of the solution (cardioid) has a greater curvature More exact comparison
with experiments is not possible because of the absence of experimental data.

Numerical experiments with the model for inclined jets show that also for
0 # 90° two different types of solution can be obtained. The most interesting
is the solution corresponding to the model-TI. In dependence on the angle 6,
the switching point A can have different positions. If the angle 6 decreases,
then the part of the film, which does not produce droplets, can increase. There
exist also values of parameters at which the point A does not appear (see Fig.
7).

It would be interesting to repeat Taylor’s experiments in the case of inclined
jets. Then it would be possible to check whether the effects observed in the
numerical experiments can happen in the practice or not.

The most important question here is, how to manage different possible
regimes. The situation becomes more complicated if the liquid film interacts
with some 3D structure. It seems that there are still different interesting
problems to be solved.
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Apie skysto filmo saveika su kliutimi
A. Zemitis

Darbe nagrinéjami skysto filmo, gaminamo pur§kiamomis srovémis, matematiniai mod-
eliai. Sie modeliai teisingi esant specialioms prielaidoms apie procesa. Tiriama skysto filmo
saveika su tam tikra kliutimi. Apibendrinami egzistuojantys modeliai, skysto filmo koky-
biniai poky¢iai tiriami naudojant skaitinius eksperimentus. G.I. Taylor [Proc. R.Soc.London
Ser. A253, 313(1959)] jrodé, kad purskiamy sroviy metodu generuotas skystas filmas yra
labai jautrus laido, kuris buvo naudojamas kaip klutis, savybéms. Sio darbo tikslas yra
pasiulyti Teiloro modelio modifikacija, leidzian¢ia modeliuoti filmo pavidalg tais atvejais,
kada kampas tarp sroviy gali buti 180°. Skaitiniai rezultatai, gaunami taikant minimus
modelius, duoda du skirtingus skysto filmo vaizdus, panaSius j tuos, kurie gaunami Teiloro
eksperimentuose. Sie du pavidalai priklauso nuo to, kaip arti kliuties yra gaunami laSeliai.
Skirtumas tarp jy tuo didesnis, kuo mazesnis kampas tarp sroviy. Tokiy dviejy rezimy egzis-
tavimas gali turéti esminés jtakos kai kuriems purSkiamy sroviy taikymams tais atvejais,
kada gaminami filmai turi kontakta su kliutimis.



