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ABSTRACT

Modeling complex systems requires to reduce, to organize the system complexity and to
describe suitable components. Complexity of the system can then be tackled with an agent-
oriented approach, where local interactions lead to a global behavior. This approach helps
to understand how non-deterministic behavior that is near self-organized criticality (SOC)
is used to explain natural and social phenomena can emerge from local interactions between
agents.

The basis of our decision to develop cellular automata (CA) as a model for energetics system
formation and development in restricted region is its hypothetical dependence on and origin
from the "urban slice" which is basis for "energetics slice". In the urban CA model there we
introduce five types of cells representing empty area, roads, houses, water and forest. Some
types of cells are introduced only for the model better correspondence to the real system
and don’t have essentially influence to the modeling results. We assign all cell types certain
weight, which affects the probability of new "houses" cells appearance replacing "empty
area" cells. Usually all cells except the empty ones have much bigger weight, therefore the
dynamic of houses distribution in restricted area is organized in clusters.

A first step in model ’reliability’ is an understanding how these systems behave over time.
CA’s are an alternative to differential equations on an attempt to model these systems. One
of the most important features of CA models is its desirable capacity to capture quantitative
micro-level dynamics and relate them to qualitative macro-level behavior.

Energetics system formation is dynamic process that directly depends on houses conglom-
erate formation, energy production and transferring prices, energy consumption factor etc.
Dynamical CA model can be used to realize certain purposes of energetic policy and to make
decisions about volume of production as well as prices of generation and transmission. These
decisions, in one’s turn, influence successive urban and energetics system dynamics. There
is analyzed how various policies influence urban system development as well as its stability
after the new capacity is installed and prices in generation and transmission as well as
system administration are changed, etc [3]. Also there is explored how energetics system
dynamics obtained with help of dynamic model corresponds with CA obtained dynamics.
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1. CA DEFINITION

A cellular automaton is a discrete dynamical system. Each point in a regular
spatial lattice, called a cell, can have any one of a finite number of states. The
states in the cells of a lattice are updated according to a local rule. That is,
the state of the cell at a given time moment depends only on its own state one
time step previously, and the states of its nearby neighbors at the previous
time step. All cells in the lattice are updated synchronously. The state of the
lattice advances in discrete time steps.

To introduce dynamic into the system, we have to add rules. The purpose
of these rules is to define the state of the cell for the next time in dependence
of the neighborhood cells. Different definitions of neighborhoods are possible,
each one being more or less effective depending on the system you wish to
model.

Figure 1. von Neuman Figure 2. von Neuman Figure 3. Moore
Neighbourhood Neighbourhood Neighbourhood

Rules may be generalized in various ways. Each separate rule leads to
patterns that differ in detail, however the examples suggest a remarkable
result: all patterns appear to fall into only four qualitative classes. Wolfram
characterized these basic classes of behavior into:

Class 1 — evolution tends to a homogeneous state (limiting points) in which
for example all sites have value 0

Class 2 — evolution leads to a set of stable or periodic structures (limiting
cycle) that are separate and simple

Class 3 — evolution leads to a chaotic pattern or ’strange attractor’

Class 4 - evolution leads to complex structures, sometimes long-lived.

The existence of only 4 classes implies universality in the behavior of CA.

The values of sites in the initial state are randomly chosen: each site taking
on the value 0 or 1 with equal probability, independent of the values of other
sites. Even though the initial state has no structure, evolution of the automata
manifests some composition in the form of triangle ’clearings’. The sponta-
neous appearance of these clearings is a simple example of ’self-organization’.
Both ’self-similarity’ and ’self-organization’ are well-characterized collective
phenomena, seen often in dynamical fields. The following two properties are
intimately related governing how models are studied. These models are re-
versibility and irreversibility.

According to L. Hurd [2], this makes CA are an ideal meeting point between
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continuous dynamics and complexity theory, since they are discretely defined
but exhibit continuous dynamics.

A notable feature of CA dynamics is that all possible initial trajectories
merge with time. The merging of trajectories implies that information is
lost in the evolution of the cellular automaton; the evolution is irreversible.
The irreversible evolution decreases the possibility of some configurations and
increases those for others. The possibility of self-organization is therefore
a consequence of irreversibility and the structures obtained through self-
organization are determined by the characteristics of the attractors. This
is an important concept in the fact that most natural systems exhibit irre-
versible trends in their evolution. CA models can mimic this behaviour unlike
statistical mechanics, which exhibits reversible properties. While there is any
evidence that the fundamental laws of physics are reversible, many systems
behave irreversibly on a macroscopic scale and are appropriately described
by irreversible laws. Cellular automata provide mathematical models at this
macroscopic level.

2. CA FOR URBAN SYSTEM

Assume that energetics system development is based on the urban system
dynamics. Therefore first of all we simulate with CA a real geographical
situation and use it as a background for the next step — estimation for demand
of new power plants. In this article we examine only the urban model.

The energetics system modelling can be divided into two major "slices":
"urban" and "energetics". The urban slice describes systems behaviour as
emerging from discrete entities (agents) interacting with each other. Energet-
ics slice is concerned with describing aggregate behavior by characterizing the
fundamental relationships between urban aggregations.

Our initial urban model is defined as a two-dimensional array with L cells
with closed boundaries. The total number of houses NV in the system is time
dependent variable. Each cell may be occupied by one house or it may be
empty. Each cell corresponds to an area segment with length [ and height
1. The growing of population throughout the cells is determined by a set of
updating rules.

For our background model we adapt the following set of rules:

1. For all cells: if cell is empty then count sum of neighbors weights;

2. To put a new houses in lattice with certain probability according to calcu-
lated weights.

3. MATHEMATICAL MODEL

The finite urban domain S consists of elements s;; of equal size. Each ele-
ment except those forming the border of the domain S has boundaries with
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the other eight elements. Each element s;; can be in one of these states:

1. empty land - Ejj;
2. river or lake — W;;;

3. road — Ryj;
4. forest — Fy;;
5. house — Hj;;

The initial configuration of the domain S changes at discrete time moments
according to such a transition rule:
Element H;; may emerge only from the element E;j. All the rest elements
pass to themselves at discrete time moments.
Each element s;; has the weight w(s;;) > 0, which depends on the state of
the element. Since the transition rule permits the change only of element E;;,
further we shall consider the properties of these elements. The &k — vicinity
of element E;; in the land state is formed of all the elements distant from
the E;; no more than by k elements. E.g., 1 — vicinity consists of 9 adjacent
elements (including the element E;; itself), etc.

The total amount of elements constituting the k — vicinity

wk (E;j) = Z w(Sim)-
i—k<Il<i+k
J—k<m<j+k

It should be noted that the larger the k — weight w(E;;) of the element, the
greater the probability for the land element E;; to pass into the state Hj;.

4. ALGORITHM

The states to all the elements of the domain S are attributed so that the
domain corresponds to some real or fictitious urban situation. The initial
situation will change at discrete time moments. We choose the environment
k > 0. The k — weight w*(E;;) is computed to each land element E;;. Since
the weights of elements making up the k — environment in this model do not
depend on the distance to E;;, too large an environment equalize the weights
of elements E;;. Therefore, in fact £ is not to be too large. The sum of &k
— weights of all elements E;; of the region S is E;;, and the k — weight of
k

element E;; is a part u;)lgi(Eé’))
is consecutively filled by partial intervals of length w*(E;;). In this interval a
uniformly distributed random variable is generated. A random value indicated
the interval, to the element of which the transition rule is applied: the state
E;; is changed into the state H;;. After this phase stage, the weights of the
remaining elements E;; (there are less of them by a unit) are recomputed and
a random variable generated again.

of the total sum. The interval of length w*(S)
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5. SIMULATION RESULTS

Using this model there were done calculations that allow us to calibrate
weights value looking for the best fit to real system. It was chosen initial
urban pattern (Fig. 4). We have got settlement centralization with parame-
ters values: w!(E) = 0, w'(H) = 999 (Fig.5), but it isn’t specific feature to
real urban systems. Another test was done with w'(E) = 10, w!(H) = 50
(Fig.6) and we received homogeneous urban dynamics that doesn’t look realis-
tic too. The best-fit parameters to real system were w'(E) = 3, w!(H) = 800
(Fig.7). Within the given values we have different size of clusters. To put all
calculations results into logarithmic scale we will see the law approximate to
log-log distribution.

It will be observed initial situation doesn’t have essential influence to con-
glomerates with the same weights distribution. We can follow that from Fig. 8
and diagram of clusters distribution. That means that only proportion of two
quantities — E and H — is dominant in urban system formation.

.
: |
Figure 4. Initial urban landscape. Figure 5. Urban superconcentration

(w'(E) =0, wl(f_f) = 50)

Figure 6. Urban homogeneity Figure 7. Urban situa-
(w!(E) = 50, w'(H) = 50) tion close to real distribution
(wl(E) = 3, wl(H) = 800)
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Figure 9. Diagram of cities according to population in
Lithuania.

In Fig.7 after 4000 time steps we can see simulated situation where the
biggest concentration of houses appear near roads, water and forest. Distri-
bution of simulated conglometares in Fig. 5,6,7 is shown in Fig.8. Modeling
shows that conglomerate log-log distribution according to doesn’t depend on
initial pattern, only on weights of houses H;; and empty place E;;. On Fig.10
there are simulation results, when initian pattern contains only empty place
cells. Figures 4, 5, 6, 7 shows the application of these updating rules to an
example system with 100x100 cells.

6. CONCLUSION

Model analysis and simulation results enable us to conclude about its ade-
quacy to real urban system. Urban dynamics mainly depends on two param-
eters (cell weights): empty places and houses. Changing proportion of these
weights we can calibrate them and get the most suitable to real system dy-
namical behavior. Multiple simulations demonstrate that marginal length L
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Figure 10. Situation simulated on Figure 11. Power law of situation in
empty pattern (w!(E) = 30,w'(H) = Fig.6
1200)

of the modeling area should be between 100 and 1000 cells. If there are less of
them we don’t get conglomerates bigger that 102, so we can’t do calibration
of the parameters. On another hand, if L is larger 10°> we don’t receive any
new information about parameters.

In this paper we choose to demonstrate how could be used CA in urban
system modeling. Further on the background of this model we’ll compose
dynamical model of energetics system. We must see that SOC is subsistent
to urban system.

Finding this fact allow us to use obtained statistical information about
energetics system (capacity of generators, their distribution) in making deci-
sions about system development and analyzing influence of various solutions
to system dynamics, energy demand, generation costs and etc.
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Lasteliy automatai ir energetinés sistemos susidarymas
S. Norvaisas, R. Siugidaité

Pasiulytas efektyvus lasteliy automaty (LA) modelis, apraSantis sudétingg urbanistine sis-
tema (namy konglomeraty) krizinés savirangos aspektu. Krizinés savirangos busena (KSB)
yra budinga daugeliui sudétingy dinaminiy sistemy, tame tarpe ir urbanistinei bei ener-
getinei sistemai. Siame straipsnyje nagrinéjamas urbanistiniy klasteriy formavimasis ir
parametry, kurie labiausiai atitinka KSB, nustatymas. PaZzymima, kad energetiné sistema,
kuri yra apibudinama generatoriy kiekio pagal galinguma pasiskirstymu, yra iSvestiné i§
urbanistinés sistemos, todél jai tinka urbanistinés sistemos LA modelis.



