Mathematical Modelling and Analysis Volume 7 Number 2, 2002, pages 313–318 © 2002 Technika

A GLOBAL CHARACTERISTIC OF G-LIMIT OPERATORS FOR QUASILINEAR POTENTIAL ELLIPTIC SYSTEMS¹

U. RAITUMS

Institute of Mathematics and Computer Science University of Latvia

Rainis boulevard 29, LV-1459 Riga, Latvia

E-mail: uldis.raitums@mii.lu.lv

Received September 24, 2002

ABSTRACT

The paper considers a family of quasilinear potential elliptic systems and uses the fact that all G-limit operators for this family can be characterized by means of gradients of convex functions F (locally with respect to the spatial co-ordinates). It is shown that all these functions F must satisfy an inequality expressed in terms of functions F and their conjugate functions.

Key words: elliptic systems, convex functions, G-limit operators.

1. INTRODUCTION

In this paper, we give a characteristic of G-limit operators for simple quasilinear potential elliptic systems of the kind

$$\operatorname{div}\left[\sum_{s=1}^{N} \sigma_{s}(x) F'_{s}(\nabla \overline{u}(x) + g(x)) - f(x)\right] = 0 \text{ in } \Omega,$$

$$\overline{u} = (u_{1}, \dots, u_{m}) \in H_{0}^{1}(\Omega; \mathbf{R}^{m}),$$
(1.1)

depending on the functional parameter σ

$$\begin{aligned} \sigma \in S &= \{ \sigma \in L_{\infty}(\mathbf{R}^n; \mathbf{R}^N) \mid \sigma = (\sigma_1, \dots, \sigma_N), \\ \sigma_j(x) &= 0 \text{ or } 1, \ j = 1, \dots, N; \\ \sigma_1(x) + \dots + \sigma_N(x) &= 1 \text{ a.e. } x \in \mathbf{R}^n \}. \end{aligned}$$

Here $F_s, s = 1, ..., N$, are given strictly convex smooth functions with quadratic growth, $F'_s(\cdot)$ is the gradient of $F_s(\cdot)$, s = 1, ..., N.

 $^{^1\}mathrm{This}$ research was partially supported by the Latvian Council of Sciences, Grant No. 01.0441.

314 U. Raitums

It is known, see for instance, Raitums [3], that all G-limit operators for the family (1.1) can be fully characterized by the set A of functions

$$\mathcal{A} = \{ F_{\sigma} \in C^{1}(\mathbf{R}^{nm}) \mid \sigma \in S \}$$

where for a chosen $\sigma \in S$

$$F_{\sigma}(z) = \inf_{v \in H^{\#}} \int_{K} \sum_{s=1}^{N} \sigma_{s}(x) F_{s}(v(x) + z) dx, \quad \forall z \in \mathbf{R}^{nm}.$$

Here $K \subset \mathbf{R}^n$ is the unit cube, $K = (0,1)^n$, and

$$H^{\#} = \{ v \in L_2(K; \mathbf{R}^{nm}) \mid v = \nabla \overline{u}, \ \overline{u} \in H^1_{loc}(\mathbf{R}^n, \mathbf{R}^m), \ \overline{u} \text{ is } K - \text{periodic} \}.$$

One of the main features of the nonlinear (the functions $F'_s(\cdot)$ are not affine) case is that the properties of $F_{\sigma}(\cdot)$ at a point z depend on the behaviour of F_s on the whole \mathbf{R}^{nm} , i.e. these properties are not local.

We are interested in the question of the existence of a larger set $\hat{\mathcal{A}} \subset C^1(\mathbf{R}^{nm})$ of strictly convex functions \hat{F} such that if for some $z' \in \mathbf{R}^{nm}$

$$\hat{F}'(z') = z''.$$

then there exists a sequence $\{F_{\sigma^k}\}\subset \mathcal{A}$ such that

$$F'_{\sigma^k}(z') \to z''$$
 as $k \to \infty$.

If such a set $\hat{\mathcal{A}}$ (with some additional properties) exists then by standard methods of the theory of G-convergence and monotone operators one can easy show that for every solution \overline{u}^0 of the system

$$\operatorname{div}\Big(\sum_{s=1}^{s_0} \chi_{\Omega_s}(x) \hat{F}'_s(\nabla \overline{u}(x) + g(x)) - f(x)\Big) = 0 \text{ in } \Omega,$$
$$\overline{u} \in H^1_0(\Omega; \mathbf{R}^m),$$

there exists a sequence $\{\sigma^k\}\subset S$ such that the sequence $\{\overline{u}^k\}$ of solutions of the system (1.1) with $\sigma=\sigma^k,\ k=1,2,\ldots$, respectively converges weakly in $H^1_0(\Omega;\mathbf{R}^m)$ to \overline{u}^0 as $k\to\infty$. Here $\{\Omega_s\}$ is a partition of Ω by means of pairwise disjoint measurable sets $\Omega_s,\,\chi_{\Omega_s}$ is the characteristic function of Ω_s and $\hat{F}_s\in\hat{\mathcal{A}},\ s=1,\ldots,s_0$.

In this sense the passage from $\{F_1; \ldots; F_N\}$ to \mathcal{A} and further to $\hat{\mathcal{A}}$ preserves the weak closure of the set of all feasible solutions of the family (1.1).

In what follows (Section 3) we shall show that if the functions F_s , $s = 1, \ldots, N$, satisfy some hypotheses (see Section 2) then there exists such a set \hat{A} and its main functional characteristic is

$$\hat{F}(z') + \hat{F}^*(z'') > Q\mathcal{F}(z', z'') \quad \forall z', z'' \in \mathbf{R}^{nm},$$

where $Q\mathcal{F}$ is some $(\text{curl}, \text{div})^m$ – quasiconvex function and by \hat{F}^* is denoted the conjugate to \hat{F} function.

2. PRELIMINARIES

Let $n \geq 2$, $m \geq 1$, $N \geq 2$ be integers and let the functions $F_s: \mathbf{R}^{nm} \rightarrow$ $\mathbf{R}, s = 1, \dots, N$, satisfy the following hypotheses.

H1. $F_s, s = 1, ..., N$, belong to $C^1(\mathbf{R}^{nm})$ and are strictly convex.

H2. There exist positive constants ν, μ such that for all $z, \xi \in \mathbf{R}^{nm}$

$$|F'_s(z) - F'_s(\xi)| \le \mu |z - \xi|,$$

 $\langle F'_s(z + \xi) - F'_s(z), \quad \xi \rangle \ge \nu |\xi|^2, \quad s = 1, \dots, N.$

H3. $F_s(0)=0, F_s'(0)=0, s=1,\ldots,N$. For a given function $F:\mathbf{R}^{nm}\to\mathbf{R}$ by F^* we shall denote its conjugate function, i.e.

$$F^*(z'') = \sup_{z' \in \mathbf{R}^{nm}} [\langle z', z'' \rangle - F(z')].$$

From $\mathbf{H1} - \mathbf{H3}$ it follows immediately that F_s and F_s^* are nonnegative and that the conjugate functions F_s^* have analogous to ${f H1}-{f H3}$ properties (with different constants ν', μ' instead of ν, μ).

Let $K \subset \mathbf{R}^n$ be a unit cube, $K = (0,1)^n$, and let

$$H^{\#} = \{ v \in L_{2}(K; \mathbf{R}^{nm}) \mid v = \nabla \overline{u}, \ \overline{u} \in H^{1}_{loc}(\mathbf{R}^{n}; \mathbf{R}^{m}), \ \overline{u} \text{ is } K - \text{periodic} \},$$

$$N^{\#} = \{ \eta \in L_{2}(K; \mathbf{R}^{nm}) \mid \eta = (\eta_{1}, \dots, \eta_{m}), \ \eta_{j} = \text{div} \mathcal{U}_{j},$$

$$\mathcal{U}_{j} \in H^{1}_{loc}(\mathbf{R}^{n}; \mathbf{R}^{n \times n}) \text{ is a skew-symmetric}$$
and $K - \text{periodic } n \times n - \text{matrix}, \ j = 1, \dots, m \}.$

We denote by $E(\nu', \mu')$ the set of all functions $F: \mathbf{R}^{nm} \to \mathbf{R}$ which satisfy the hypotheses **H1** – **H3** with ν' , μ' instead of ν , μ . Let

$$\mathcal{A} = \big\{ F_{\sigma} \in C(\mathbf{R}^{nm}) \mid F_{\sigma}(z) = \inf_{v \in H^{\#}} \int_{K} \sum_{s=1}^{N} \sigma_{s}(x) F_{s}(v(x) + z) dx, \ \sigma \in S \big\},$$

let the function $Q\mathcal{F} \in C(\mathbf{R}^{nm} \times \mathbf{R}^{nm})$ be defined as

$$Q\mathcal{F}(z', z'') = \inf_{\sigma \in S} \inf_{v \in H^{\#}} \inf_{\eta \in N^{\#}} \int_{K} \sum_{s=1}^{N} \sigma_{s}(x) \Big(F_{s}(v(x) + z') + F_{s}^{*}(\eta(x) + z'') \Big) dx$$
(2.1)

and let

$$\hat{\mathcal{A}} = \{ \hat{F} \in E(\nu, \frac{\mu^2}{\nu}) \mid \hat{F}(z') + \hat{F}^*(z'') \ge Q\mathcal{F}(z', z'') \ \forall z', z'' \in \mathbf{R}^{nm} \}.$$

316 U. Raitums

We point out that the function $Q\mathcal{F}$ is the A-quasiconvex envelope, see I. Fonseca and S. Müller [1], of the function

$$\mathcal{F}(z', z'') = \min_{S} \left(F_s(z') + F_s^*(z'') \right) \tag{2.2}$$

for the operator $A = (\text{curl}, \text{div})^m$.

Our main result is the following.

Theorem 2.1. Let the hypotheses H1 - H3 hold. Then

- i) $A \subset \hat{A}$;
- ii) if $\hat{F} \in \hat{A}$ then for every $z \in \mathbf{R}^{nm}$ there exists a sequence $\{\sigma^k\} \subset S$ (depending on the choice of \hat{F} and z) such that

$$F'_{\sigma^k}(z) \underset{k \to \infty}{\longrightarrow} \hat{F}'(z) \text{ as } k \to \infty.$$

3. PROOF OF THEOREM 2.1

In this Section we shall give a brief sketch of the proof of Theorem 2.1. First of all, the smoothness and growth properties of the functions F_s and F_s^* ensure that for every given $z', z'' \in \mathbf{R}^{nm}, v \in H^\#, \eta \in N^\#$

$$\begin{split} \inf_{\sigma \in S} \int\limits_{K} \sum_{s=1}^{N} \sigma_{s}(x) [F_{s}(v(x) + z') + F_{s}^{*}(\eta(x) + z'')] dx \\ &= \int\limits_{K} \min_{s} [F_{s}(v(x) + z') + F_{s}^{*}(\eta(x) + z'')] dx. \end{split}$$

This ensure that the function $Q\mathcal{F}$ defined by (2.1) is the $(\text{curl}, \text{div})^m$ -quasiconvex envelope of the function \mathcal{F} defined by (2.2).

Since the functions F_s satisfy $\mathbf{H1} - \mathbf{H3}$ and the functions F_s^* satisfy analogous hypotheses then almost exactly in the same way as in Miettinen and Raitums [2] it can be shown that the function $Q\mathcal{F}$ belongs to C^1 . Further, from $\mathbf{H1} - \mathbf{H3}$ and results by Raitums [3] it easy follows that the set \mathcal{A} belongs to $E(\nu, \mu^2/\nu)$.

If the function F_{σ} is given as

$$F_{\sigma}(z') = \inf_{v \in H^{\#}} \int_{K} \sum_{s=1}^{N} \sigma_{s}(x) F_{s}(v(x) + z') dx$$

then

$$\begin{split} F_{\sigma}^*(z'') &= \sup_{z' \in \mathbf{R}^{nm}} \left[\langle z', z'' \rangle - F_{\sigma}(z') \right] \\ &= \sup_{z' \in \mathbf{R}^{nm}} \sup_{v \in H^{\#}} \left[-\int_{K} \sum_{s=1}^{N} \sigma_{s}(x) F_{s}(v(x) + z') dx + \langle z', z'' \rangle \right] \\ &= \inf_{\eta \in N^{\#}} \int_{K} \sum_{s=1}^{N} \sigma_{s}(x) F_{s}^{*} \left(\eta(x) + z'' \right) dx \end{split}$$

by virtue of the representation

$$L_2(K; \mathbf{R}^{nm}) = H^\# \oplus N^\# \oplus \mathbf{R}^{nm}, \tag{3.1}$$

see, for instance, Zhikov et al. [4]. This way, for every fixed $\sigma \in S$

$$F_{\sigma}(z') + F_{\sigma}^{*}(z'') = \inf_{v \in H^{\#}} \inf_{\eta \in N^{\#}} \int_{K} \sum_{s=1}^{N} \sigma_{s}(x) \Big(F_{s}(v(x) + z') + F_{s}^{*}(\eta(x) + z'') \Big) dx,$$

i.e. the function F_{σ} satisfies the inequality

$$F_{\sigma}(z') + F_{\sigma}^*(z'') \ge Q\mathcal{F}(z', z'') \ \forall z', z'' \in \mathbf{R}^{nm}. \tag{3.2}$$

That gives the inclusion $A \subset \hat{A}$.

We point out here, that for every pair $(z', z'') \in \mathbf{R}^{nm} \times \mathbf{R}^{nm}$ there exists a sequence $\{\sigma^k\} \subset S$ such that

$$F_{\sigma^k}(z') + F_{\sigma^k}^*(z'') \to Q\mathcal{F}(z',z'')$$
 as $k \to \infty$.

That means that the estimate (3.2) is sharp.

By properties of conjugate functions we have that the equality

$$\hat{F}(z') = z''$$

for some $\hat{F}' \in \hat{\mathcal{A}}$ and some pair $(z',z'') \in \mathbf{R}^{nm} \times \mathbf{R}^{nm}$ is equal to the relationship

$$\hat{F}(z') + \hat{F}^*(z'') - \langle z', z'' \rangle = 0. \tag{3.3}$$

The same properties of conjugate functions and the definition (2.1) of $Q\mathcal{F}$ imply

$$Q\mathcal{F}(\xi', \xi'') \ge \langle \xi', \xi'' \rangle \ \forall \xi', \xi'' \in \mathbf{R}^{nm}. \tag{3.4}$$

We have used here the representation (3.1).

318 U. Raitums

Since $\hat{F} \subset \hat{A}$ then the relationships (3.3), (3.4) imply

$$Q\mathcal{F}(z',z'') = \langle z',z'' \rangle.$$

Because, after taking the inner infimum in (2.1)

$$Q\mathcal{F}(\xi',\xi'') = \inf_{\sigma \in S} [F_{\sigma}(\xi') + F_{\sigma}^*(\xi'')],$$

then there exists a sequence $\{\sigma^k\} \subset S$ such that

$$F_{\sigma^k}(z') + F_{\sigma^k}^*(z'') = \langle z', z'' \rangle + \varepsilon_k, \ \varepsilon_k \to +0 \text{ as } k \to \infty, \tag{3.5}$$

and, by duality,

$$F_{\sigma^k}(z') + F_{\sigma^k}^*(F_{\sigma^k}'(z')) = \langle z', F_{\sigma^k}'(z') \rangle. \tag{3.6}$$

The set \mathcal{A} belongs to $E(\nu, \mu^2/\nu)$, hence, all F_{σ}^* belong to some class $E(\nu', \mu')$ and from (3.5) and (3.6) it follows

$$|z'' - F'_{\sigma^k}(z')| \le \left(\frac{2\varepsilon_k}{\nu'}\right)^{1/2}, \ k \ge 1.$$

But that means $F'_{\sigma^k}(z') \to z''$ as $k \to \infty$. This way, the second statement of Theorem 2.1 is also proved.

REFERENCES

- I. Fonseca and S. Müller. A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J.Math. Anal., 30, 1355 - 1390, 1999.
- [2] M. Miettinen and U. Raitums. On C^1 -regularity of functions that define G-closure. Z. Anal. Anwend., 20, 203 214, 2001.
- [3] Raitums U. On the local representation of G-closure. Arch. Rational. Mech. Anal., 158, 213 - 234, 2001.
- [4] Zhikov V.V., S.M. Kozlov and O.A. Oleinik. Homogenization of Differential Operators and Integral Functionals. Springer, Berlin Heidelberg New York, 1994.

G-ribiniųoperatorių globalioji charakteristika kvazitiesinėms potencinėms elipsinėms sistemoms

U. Raitums

Straipsnyje nagrinėjama kvazitiesinių potencinių elipsinių sistemų šeima ir pasinaudojama, kad visi G-ribiniai operatoriai šiai šeimai gali būti charakterizuojami iškiliosios funkcijos F gradiento (lokaliai erdvinių koordinačių atžvilgiu) reikšmėmis. Parodyta, kad visos šios funkcijos F tenkina nelygybę, išreikštą per funkcijas F ir joms jungtines funkcijas.