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ABSTRACT

Functionals with values in Non-Archimedean field of Laurent series applied to the definition
of generalized solution (in the form of soliton) of the Hopf equation. Calculation method
for the profile of infinitely narrow soliton is proposed. Applying this method, calculations
of profiles are reduced to the nonlinear system of algebraic equations in R?+1, n > 1. It is
shown that there is a possibility to find out some of the solutions of this system using the
Newton iteration method. Example and numerical test are considered.

Key words: generalized functions, distributions, conservation law, Hopf equation, soli-
ton, shock waves.

1. INTRODUCTION

While working at Los Alamos in 1943-44, von Neumann became convinced
that the calculation of the flows of compressible fluids containing strong shocks
could be accomplished only by numerical methods. He conceived the idea of
capturing shocks, i.e., of ignoring the presence of a discontinuity. Employing
a Lagrangian description of compressible flow, setting heat conduction and
viscosity equal to zero, von Neumann replaced space and time derivatives by
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symmetric difference quotients. Calculations using this scheme were carried
out; the approximation resulting from these calculations (see [20]) showed
oscillations on the mesh scale behind the shock. Von Neumann boldly con-
jectured that the oscillations in velocity represent the heat energy created by
the irreversible action of the shock, and that as Az and At tend to zero, the
approximate solutions tend in the weak sense to the discontinuous solution of
the equations of compressible flow.

In [14] it was counter-conjectured that von Neumann was wrong in his sur-
mise, i.e., that although the approximate solutions constructed by his method
do converge weakly, the weak limit fails to satisfy the law of conservation of
energy.

In [8] J. Goodman and P. Lax investigated von Neumann’s algorithm ap-
plied to the scalar equation

ug +uuy, =0 (1.1)

(it is called the Hopf equation), in the semi-discrete case. Using numerical
experimentation and analytical techniques they demonstrated the weak con-
vergence of the oscillatory approximations, and that the weak limit fails to
satisfy the scalar equation in question.

Von Neumann’s dream of capturing shocks was realized in his joint work
with Richtmyer in 1950, see [21]. Oscillations were eliminated by the judi-
cious use of artificial viscosity; solutions constructed by this method converge
uniformly except in a neighborhood of shocks, where they remain bounded
and are spread out over a few mesh intervals. The limits appear to satisfy the
conservation laws of compressible flow. The conservation of mass and momen-
tum is the consequence of having approximated these equations by difference
equations in conservation form; but the von Neumann-Richtmyer difference
approximation to the energy equation is not in conservation form.

In the paper [10] T. Hou and P. Lax compared the results of a von Neu-
mann-Richtmyer calculation with the weak limit of calculations performed by
von Neumann’s original method. In the paper [10] P. Lax asserts that the
difference scheme of von Neumann, because of the centering of the difference
quotients, is dispersive; it is this quality that is responsible for the oscillatory
nature of the solutions.

E. Hopf [9] studied (1.1) and defined the generalized solution for this equa-
tion. He considered the perturbed equation

Ut + UUy = pUg,, where p— 0 (1.2)
which converges to the equation (1.1).
By a generalized solution u of (1.1) or (1.2), u = 0 E. Hopf meant a function

u that is measurable and quadratically integrable in every closed rectangle in
the open semiplane ¢ > 0 and that satisfies the relation

// [ugt + u;gw] dzdt = 0, (1.3)
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where g is an arbitrary function of class C' in t > 0 that vanishes outside
some circle lying entirely in ¢ > 0. He assert: Every limit function v obtained
from the solution of (1.2) as u — +0 is a generalized solution of (1.1). By a
generalized solution w of (1.2) E. Hopf meant a function « that is measurable
and quadratically integrable in every closed rectangle in the open semiplane
t > 0 and that satisfies the relation

// [uft + u;fw + pufpg | dzdt =0, (1.4)

where f is an arbitrary function of class C? in ¢t > 0 that vanishes outside
some circle lying entirely in ¢ > 0.

This method is called the “disappearing viscosity” method. It was developed
by E. Hopf [9], O.A. Oleinik [23], P. Lax [10; 15].

There is also the “zero dispersion limit” method developed by P. Lax [8; 14]
V.P. Maslov and his collaborators [5; 18]. The idea is to use the following
equation

U + WUy = E2Ugpy, € — 0. (1.5)

for (1.1). V.P. Maslov and his collaborators constructed an asymptotic so-
lutions for (1.1). They speculated on the fact that equations (1.2) and (1.5)
have solutions in the class C'*° functions. For example, a particular solution
of the equation (1.5) is the function

, (T —ct
u(z,t) = c+4 —12cosh 2 (u) , ¢>0,
€

which represents so-called an infinitely narrow soliton. A particular solution
of (1.2) will be, for instance,

— 2t
u(z,t) = 2 — 2tanh (m ” ) ,

which converges to a discontinues function.

On the other hand, in the paper [30] S.L. Sobolev (1936) introduced math-
ematical basics of the theory of generalized functions, he introduced the idea
of a generalized function as a functional and proposed the concept of general-
ized solutions of a linear differential equation. These generalized functions and
generalized solutions were developed by L. Schwartz [29]. However, Sobolev-
Schwartz distributions can not applied to nonlinear differential equations. For
example, to substitute generalized function H(xz — vt) (where H is the Heavi-
side function) into the (1.1) one need to define the product of two distributions
H and H' for the term wu,. However, in 1954 L. Schwartz showed that it is
impossible to introduce an associate multiplication in the space of distribu-
tions.
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Starting from 1982 in the works by J.-F. Colombeau [3], M. Oberguggen-
berger [22], H. Biagioni [2], E. Rozinger [27], A.Y. Le Roux [4], Yu. Egorov
[7], J.-A. Marti [17], A. Delcroix, D.Scarpalézos [6], B. Keyfitz [12], A. An-
tonevich, Ya. Radyno [1], T. Todorov [31], S. Pilipovi¢ [19] and others, a new
theory of generalized functions is developed. Such functions form the algebra
and contain distributions.

In general, nonlinear generalized functions are classes of equivalent
smooth functions. Clearly that, one should pay attention to this approach
in order to consider nonlinear differential equations. However we are now in
a position to develop a new point of view on generalized functions and their
applications to nonlinear equations. Namely, it is necessary to use an integral
nature of a conservation law. Conservation laws are integral expressions from
physical point of view and it is natural to consider an integral form of conser-
vation laws. Moreover, we want to develop new point of view on conservation
laws using the concept of functionals with values in the Non-Archimedean
field of Laurent series. We call such functionals as R{e)-distributions [24; 26].
In addition, we give the definition of the special kind of solutions of the some
conservation laws in the sense of R{¢)-distributions and consider the method
for the numerical calculations of the smooth shocks and soliton like solutions
of the Hopf equation and equations of elasticity theory in the mentioned sense.
This method based on orthogonal system of the Hermite functions as a base
for calculation of such solutions (i.e. shocks and infinitely narrow solitons).
Calculations of profiles of infinitely narrow soliton and shock wave are reduced
to the nonlinear system of algebraic equations in R"*!, n > 1. We proved,
using the Schauder fixed point theorem [28], that the mentioned system has
at least one solution in R™t1. We showed that there is possibility to find out
some of the solutions of this system using the Newton iteration method [11].
We considered examples and numerical tests. We also should emphasis that
proposed numerical approach do not use a difference scheme.

First, let us consider a bit of theory which we will apply to conservation
laws.

2. NON-ARCHIMEDEAN FIELD OF LAURENT SERIES AND
R(c)-DISTRIBUTIONS

The theory of Non-Archimedean fields was considered in the book by A.H.
Lightstone and A. Robinson [16].

DEFINITION 2.1. A Laurent series is a formal object

o

k
Z €n+k5n+
n=0

where k is a fixed (i.e., fixed for this Laurent series), each &; € R, and either
& #£0oreach & = 0.
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The Laurent series Z;’ozo ne™, where §g = 1 and &, = 0if n > 0, is denoted
by 1. It is easy to see that the Laurent series is a field. Let us denote it by
R{e). The norm on the field of Laurent series can define

|z, =e @) for each z e R{e)

(in place of e one can use any number greater then 1). The function v(z) is
a Non-Archimedean valuation. Define v(0) = oo,

v (Z §n+k€"+k> =k if Y Lure™F£0, & #0.
n=0

n=0

The norm | - |, have properties
1. |z|, =0 ifandonlyif z =0,
2. |zyly = |]v - |ylv,
. 2+ yl, < max{lel,, yl.}-
Here, we propose a general construction of the R{e)-valued generalized func-

tions [25]. These objects are a natural generalization of Sobolev-Schwartz
distributions. We call them as R(e)—distributions.

1. Consider all functions f(z,e) € C*°(R x (0,1)) such that integrals

+oo
/ f (@, e)(x)dz

exist for any ¢ and for all ¥(z) from a given class of functions X (X can
be C§°(R), S(R) and etc.).

+oo
2. Suppose also that / f(z,e)¢(x)dz is a number af (1) from the field of

—o0
Laurent series R{e).

3. The two functions f(z,e) and g(z,e) call equivalent with respect to test
functions X if and only if
+oo

+oo
/ (@, )p(@)de = ag. () = ag..(®) = / oz, €)p(z)de.

— 00

The equality means in sense of the field of Laurent series R(e) for all
functions ¢ € X. Classes of equivalent functions call R(e)—functions. The
expression

+oo
/ [ (@, €Y (@)de
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associates a number from R{e) with every . Such a quantity is called a
functional. In this case a linear functional map X into the Non-Archimedean
field R({e). Call these functionals as R{e)-distributions.

Thus,

Proposition 2.1. R{e)—function f(x,e) =0 if and only if
+oo
[ f@ewids=0e Re)

for every ¥ from X.

Let denote the set of all R{e) — distributions by R(X)

Remark 2.1. Recall that the idea of representation of a function f €

L! (R) in terms of a linear functional

loc
+oo
CE(R) 39 — / F@)(@)ds € R

is based on well-known proposition that if f € L} (R) and

loc
+oo
/ f@p(@)de =0, V€ CE(R)

then f = 0 almost everywhere.
Let us consider an example of the R{e)-distribution.

Ezample 2.1. Take X = C§°(R) and f(z,e) = p(x/¢), p(z) € CP(R) then
R(e)—distribution can be written in the following form.

+o0 +oo +oo
/ plz/e)(z)dr =€ / @(x)dzy(0) + £ / :Ugo(a:)dxdjl(!o) +....

Note that ¢(z/e) converges to the function

(P(O)a if z =0,
u(z) =
0, if x #0.
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The last function almost everywhere equals to zero.
Like Sobolev-Schwartz distributions we can differentiate R(e)—distributions.
For example,

+00 oo
| etare@iz == [ olafe) g b
+oo d +o0 +o0 V,b”(O)
—/go(m/s)%ip(a:)dxz—s/cp(m)dwzp'(O)—eQ/:cgo(a:)da: TR

It is evident that R({e)—distributions are more general objects than Sobo-
lev-Schwartz distributions [29; 30].

3. CONSERVATION LAWS:
NON-ARCHIMEDEAN APPROACH

A conservation law asserts that the rate of change of the total amount of
substance contained in a fixed domain G is equal to the flux of that substance
across the boundary of G. Denoting the density of that substance by u, and
the flux by f, the conservation law is given by

4 u(t,x)dx = — frdsS.
dt Jg oG

Applying the divergence theorem and taking d/dt under the integral sign we
obtain

/ (ug + divf)dz = 0.
G

Dividing by vol (G) and shrinking G to a point where all partial derivatives
of u and f are continuous we obtain the differential conservation law

ut(t,z) + div f(u(t,z)) = 0.

Note, that if f(u) = u?/2 then we obtained the Hopf equation (1.1). In gen-
eral, previous calculations are based on the following well known proposition.

Proposition 3.1. If G € L! (R) and

loc
+oo
/ G(2)b()dz = 0 for Vb € C°(R)

then G = 0 almost everywhere.
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DEFINITION 3.1. Let us consider two sets of the smooth functions, depending
on a small parameter ¢ € (0,1]. Let us take all functions v(¢,z,€) which have
the type

v(t,z,e) =lo + Alp (x :_ Ct) ,

+oo
lo, Al, ¢ are real numbers, Al # 0 and ¢ € S(R), / o(y)dy = 1. We denote

—00
this set of functions by I and call it as a set of infinetely narrow solitons.

DEFINITION 3.2. Now, let us take all functions w(t, x,e) which have the form

w(t,x,€) = ho + AhH (w —Eat) ,

hg, Ah, a are real numbers, Ah # 0,
T —+oo
H@) = [ s, [ oy =1
—0o0 —0o0
and 6 € S(R). We denote this set of functions by J, and call it as a set of
shock waves.

It is natural to consider conservation laws as an integral expressions which
contain the time ¢ as parameter. Therefore, we introduce the following con-
cept.

DEeFINITION 3.3. The function v € I (or w € J) will be a solution of the

Hopf equation up to e7?, p € Ny in the sense of R(e)—distributions if for any
te[0,T]

+oo

+oo
[ nlt..0) 4ot 0ot N b(@)s = 3Gt €RE), (31
o k=p
+oo +o0
/ {w(t, z,€) + w(t, z,e)wy (¢, z,€) } Y(x)dx = Z nre® € R(e) (3.2)
S k=p

for every ¢ € S(R). In case when p is equal to +oo the function v(t, z,€) (or
w(t, z,€)) exactly satisfies the Hopf equation in the sense of R{e)—distributions.
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Certainly, instead of the Hopf equation one can consider some other con-
servation law.

From mathematical point of view, we deal with a infinitely differentiable
functions in definitions 3.1 and 3.2, so that we avoid the problem of distribu-
tion multiplication. From physical point of view, functions from the set I or J
can describe fast processes. Mathematical models of such processes based on
functions from I or J may give additional information and take in account a
short zone where physical system make a jump from one position to another.

Thus, we will consider solutions of the Hopf equation which are infinitely
narrow solitons or shock waves. It easy to see that

lo + Alp(0), if z=-ct,

v(t,x,e)—){ lo, if 3 ct. as €—0

w(t,z,e) — ho + AhH(x —at), as & —0

here H is Heaviside function.

4. NUMERICAL CALCULATION OF THE MICROSCOPIC
PROFILES OF SOLITON LIKE SOLUTIONS OF THE HOPF
EQUATION IN THE SENSE OF R{(e)-DISTRIBUTIONS

Thus, conservation laws are integral expressions. Therefore, it is natural, that
one can interpret the Hopf equation in the sense of the definition 3.3.

We will seek a solution of the Hopf equation in the type of infinitely narrow
soliton, i.e. let v € I. Substituting v(¢,z,¢) into integral expression (3.1) and
using the following formulas

o = 1
/ a {90 (m ; ct) } W(@)dz = zcekﬂmkﬁw(kﬂ)(ct),
k=0

o (1 t oo 1
O J1l 5 (Z—C — k1 L (k+1)
/ oz {2“0 ( c )}w(”’")dm kzzo e g (et).

—00

we obtain

k+1 ¢(k+1) (ct) )

- (4.1)

+oo +oo
/ {vy + vu, }pdx = Z {Al(c—lo)my — (Al)’gr } e
“0o k=0
Here we denoted

Vi Vo)
my(p) = /ykw(y)dy, gr(p) = /y’“%dy, k=0,1,2,....

—00 —00
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From the last expression we have conditions for the function ¢(z). Namely,

c—1
() — Alomk(w) =0, k>0. (4.2)

From the first (k = 0) equation we have

—+oo

c—lo_g_o_l/ 2
A = mg =2 @ (z)dz. (4.3)

—0o0

Hence, we can rewrite conditions (4.2) as follows

( 70g02 (x)dw) ( +/°°:c’“cp(x)da:) = +/Ooxkc,02(:c)d$, k>0,1,2. (4.4)

Now, let us prove the following lemma.

Lemma 4.1. For any non-negative integer n there exists such function ¢ €
S(R), ¢ # 0 which satisfies the following system of non-linear equations:

+oo
+00 [ z*p?(z)dz
/ zFo(x)dr = % k=0,1,2...n. (4.5)
oo [ ¢?(@)da

Proof. First, we will seek function ¢(z) in the following form:
o(x) = coho(z) + c1hi(z) + ... + cnhn(2), (4.6)

where
Hk(.'lj') 2
hy(z) = —=L—e @ /2
(@) NG

are Hermit functions. Then we substitute expression (4.6) into conditions
(4.5). After that we will have nonlinear system of n + 1 equations with n + 1
unknowns (co, C1, €2, . .,C,). We write this system by the following way

AZ = N(Z), T=(co,c1,---,Cn), (4.7)
here A is a matrix with elements

+o00o
Ay = [ a*hi(o)ds = (<P VERRD ), i = VT, k=012, n

—0o0
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N is a nonlinear map such that

1

k=0

1B

Vector &, = (eg, e1,...,€p) is such that e, =1 and e; = 0 for all j # k. N(k)
are matrices with elements

+oo
Niy(k) = /wkhi(x)hj(w)dm, i k=012 .n
and functions
o (N(k)Z,%)
@ =""zp

Note that functions f(Z) are continuous everywhere except £ = 0 and
|fx(Z)] < |IN(k)|]| due to Cauchy-Bunyakovskii inequality. Matrix A is in-
vertible for any n because det(A) is a Wronskian for the linear independent
system of Hermit functions ho(x), h1(z), ... hy(x) and

(n+1)

det(A) = (21) “F W (ho(0), h1 (0), . . . b (0)).

We can write the system (4.7) as

F=) fu@A & = F(&) or #=A '(N(2)) = F(&). (4.8)
k=0

n

Let us describe the function F' : R*t! —s R™+!l. It is continuous except at
Z = 0 and bounded. Indeed,

n n
IF@)I < IATNY NG, ra = AT IN R (4.9)
k=0 k=0
Let us consider function N'(£). It is continuous function everywhere in R™+!

except ¥ = 0 and, moreover, N'(R"*1\{0}) C II; where II; = {# € R"*! :
20 = 1} is a plane. Further A=!1(Il;) = II, where II, = {§ € R"! :

n
> agjy; = 1} is another plane.
k=0

+o0
Ao, = /hj(m)dmz(—i)j\/Qwhj(O), i=vol, j=01,2, . n
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Thus, we can consider the function F(Z) which is defined on the convex com-
pact set C,, = Il B[0,r,] such that F : C,, — C,,, where B[0,7,] is a
closed ball with radius r,,. Function F' is continuous on the C,, because of
0 ¢ C,,. Now we can use J. Schauder theorem [28]. B

Theorem 4.1 [Schauder fixed-point theorem].Let C' be a compact convex
subset of a normed space E. Then each continuous map F : C — C has at
least one fixed point.

Hence, we can conclude that our system (4.8) and therefore system (4.7)
has at least one solution. Thus, there is a function p(x) which satisfies to
conditions (4.5) proposed lemma.

Remark 4.1. Let assume that function ¢(z) satisfies Lemma 4.1 condition.

If 8 € R then the function ¢(x + 3) also satisfies this Lemma 4.1 condition.
+oo

Moreover, if / ¢*(z) dr = a then p(ar) satisfies Lemma 4.1 condition.

—0o0
Thus, we can formulate the following result.

Theorem 4.2. For any integer p there is a infinitely narrow soliton type so-
lution of the Hopf equation (in the sense of the definition 3.3) up to e P with
respect to the norm | - |,, i.e.

o(t,z,€) = lo + Al (””;Ct), (4.10)
+oo
here lg, Al, ¢ are real numbers, Al # 0 and ¢ € S(R), / p(y)dy = 1. More-
over, -
I 1 +oo
C— g 2
== . 4.11
=g [ P (4.11)

For example, calculations in case p = 7 give the “profile” ¢(z) (see Fig. 1)

for the infinitely narrow soliton v(t,z,¢) = ¢ (£=%):

co | c2(4s” =2) (162" — 4827 +12) | 20
z) = + e T/ 4.12
#(2) {\“/7_r V222147 V2i4l (4.12)

where ¢o = 0.66583, co = —0.23404, ¢4, = 0.05028, ¢ = 0.25032 (c is a velocity
of the soliton). Numbers cg, ¢2, ¢4 and ¢ were found approximately by iteration
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method
Ft1 = ATH N (&), m > 0.

Matrix A and a nonlinear map N were introduced in the proof Lemma 4.1.

12 12

0.8 0.8

0.6 0.6 / \
04 04

0.2 0.2 / \

0 0
-0.2 -0.2
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
Figure 1. The case p =7, ¢ = 0.25032. Figure 2. The case p = 13, ¢ = 0.35442.
12 12

1 1

0.8 0.8 /\

0.6 0.6

L L

0.2 / \ 0.2

: : [ 1

-0.2 -0.2
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Figure 3. The case p = 15, ¢ = 0.38267. Figure 4. The case p = 17, ¢ = 0.40892.
12 12

) /N . i
. I . I
°'§ R °'§ AR

-0.2 -0.2
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Figure 5. The case p =19, ¢ = 0.43357. Figure 6. The case p = 21, ¢ = 0.45678.

Soliton-like profiles ¢(z) for the Hopf equation in case p = 13, 15, 17, 19,
21 are given in Fig. 2, 3, 4, 5, 6.

For the p greater than 21 matrix A is close to singular and calculations can
be inaccurate.
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5. CONCLUSIONS AND REMARKS

In fact, we considered only special kind of solutions from the sets I and J.
Moreover, mentioned solutions are “approximate” solutions. It is open ques-
tion about existence of the solution of the Hopf equation in sense of the
definition 3.3 when p = co.

We should notice that there is also a Non-Archimedean approach which
is developed by V. Vladimirov, I. Volovich, E. Zelenov [32], A. Khrennikov
[13]. This approach is based on p-adic valued distributions and is used for the
construction of some models in Mathematical Physics.

The authors of the papers [4; 7] considered the same equations but they
speculated a different ideology for generalized solutions and generalized func-
tions.
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Funkcionalai su reik§mémis ne- Archmediniuose Laurent’o seky lau-
kuose ir jy taikymai elastiskumo teorijos lygtims

M. Radyna

Funkcionalai su reik§mémis ne-archimediniuose Laurent’o seky laukuose pritaikyti apibrézti
apibendrintajj Hop’o lygties sprendinj solitono pavidalu. Pasiulytas skaitinis algoritmas
begalo siauro solitono profilio radimui. Taikant §j metoda, profilio radimas suvedamas
i netiesinés algebriniy lygéiy sistemos erdvéje R*t1 n > 1, sprendimg. Parodyta, kad
kai kuriuos sprendinius galima surasti naudojant Niutono iteracinj metoda. Pateikiami
pavyzdZiai ir skaitiniai testai.



