MATHEMATICAL MODELLING AND ANALYSIS
VoLuME 7 NuUMBER 2, 2002, PAGES 285-296
© 2002 Technika

QUADRATIC SPLINE COLLOCATION
METHOD FOR WEAKLY SINGULAR
INTEGRAL EQUATIONS AND
CORRESPONDING EIGENVALUE
PROBLEM !

R. PALLAV and A. PEDAS

Institute of Applied Mathematics, University of Tartu
Liivi 2, 50409 Tartu, Estonia

E-mail: rene.pallav@ut.ee arvet.pedas@ut.ee

ABSTRACT

A quadratic spline collocation method for the numerical solution of weakly singular Fred-
holm integral equations of the second kind and corresponding eigenvalue problem is con-
structed. Using quasi-uniform and special graded grids, the rate of convergence of proposed
numerical schemes is studied theoretically and numerically.
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1. INTRODUCTION

We consider a linear integral equation
b
M) = [ Keou@ds+ 50, a<t<h 220, ()

with —oo < a < b < 0o and given functions K and f. We assume that
K(t,s) = g(t,s)k(t — ), (1.2)

where g is a 3 times continuously differentiable function on [a,b] x [a,b] and
Kk is a 2 times continuously differentiable function on [a — b,b — a] \ {0} such
that the estimate

|"(T)| < ¢|r|™? (c=const, 0 < f < 3) (1.3)
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holds with a g € (0,3) for every 7 € [a — b,b — a] \ {0}. In the following
by ¢, cg,c1,-.. we will denote positive constants, which may be different in
different inequalities. It is clear from (1.3) that the following upper bounds
for k" and k can be derived: if 8 € (0,3) \ {1,2} then

K1) <¢j(j7] P27 +1), 7€la—-bb-al\{0}, j=0,1; (14)
if 3 =1 then
|/<a'(7')| < cl(| 1n|T|| + 1), |K(T)| <e¢p, TE€Ja—b,b—a]\{0}; (1.5)
if = 2 then
|n'(r)| <ei (|77 +1), |/~z(7’)| < co(| 1n|7'||+1) , T € [a—b,b—a]\{0}. (1.6)
Thus, if 2 < 8 < 3, then the kernel K (¢, s) of equation (1.1) may have a weak
singularity at ¢t = s; if 0 < § < 2 then K is bounded but its derivatives may
be singular. Integral equations with kernels of this type arise in the potential
theory, atmospheric physics, and many other fields.

About the forcing function f in equation (1.1) we will assume that f €
C3#[a,b], where

C3Pla,b] = {y € Cla,b] N C3(a,b) : as<1;;<)b = a)_|gé —:t()ll —5p < oo}.

Here by Cla,b] the Banach space of continuous functions y(t), t € [a,b],
with the norm |[|y||ce,s = max ly(t)| is denoted and C3(a,b) is the set of
a

all 3 times continuously differentiable functions y(t), t € (a,b). Notice that
C%#[a,b], 0 < B < 3, is a Banach space with respect to the norm

|ym (t) |

— C*Pla,b].
yllcs.s1a,5 IIyIIC[a,b]Jraitigb G—aFr_nF Y€ [a, 0]

Note also that the inclusion y € C®#[a,b] implies the following inequalities
for y', y" and y""': if B € (0,3) \ {1,2} then

[y D) <[t —a) PP+ (b—t) PH3], te(ab), j=1,2,3 (L7)
if 8 =1 then for 3" the estimate (1.7) holds and
") < e2[|In(t —a)| + | In(d—t)| + 1], [y'®)| <c1, tE€(ab); (1.8)
if 8 =2 then for y"” and y" the estimates (1.7) hold and
ly'(®)| < er[|In(t —a)| + |In(b—t)| + 1], t€ (a,b). (1.9)

The regularity properties of a solution y of equation (1.1) are stated by
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Theorem 1.1 (see [19], p. 7). Let the assumptions (1.2) and (1.3) hold. Let
f € C®Ba,b] and let equation (1.1) have an integrable solution y. Then
y € C3P[a, b].

Under the hypothesis of Theorem 1.1 the derivatives of a solution of equa-
tion (1.1) are, in general, unbounded near the boundary points a and b of
the domain of integration. Therefore it is quite complicated to construct high
order approximation methods for the numerical solution of such equations. In
the sequel we construct for equation (1.1) and for corresponding eigenvalue
problem

b
My(t) = / K(t,s)y(s)ds, a<t<b, (1.10)

a collocation method using continuously differentiable quadratic splines on
quasi-uniform and special graded grids. We will discuss the convergence rate
of the proposed schemes and present some numerical illustrations. Our dis-
cussion is based on the corresponding results of [7; 12; 13], where the case of
non-homogeneous equations (1.1) is considered. Using some ideas and results
of [8-10; 17;19], we also derive error estimates for the approximate eigenvalues
of problem (1.10). Finally, we refer to [1-6;11;14; 16; 18], where a discussion
about the numerical solution of integral equations with weakly singular or
other nonsmooth kernels by the collocation method is given.

Remark 1.1. In Theorem 1.1 we do not suppose that equation (1.1) is uniquely
solvable. If f = 0, then the statement of Theorem 1.1 yields the estimates
(1.7) — (1.9) for the derivatives of the eigenfunctions of the integral operator
T defined by the formula

b
(Ty)(t) = / K(t,s)y(s)ds, a<t<b. (1.11)

2. QUADRATIC SPLINE COLLOCATION METHOD
Forne IN ={1,2,...} let

Ap ={to,t1,.. ., tn:a=tg <t <...<tp,=>b} (2.1)

be a grid on [a,b] (a partition of the interval [a,b] with grid points ¢; = tg"),
i=0,1,...,n). We say that the grid A,, is quasi-uniform if

i1 — 1 i i1 — 1) < .
oJmax (s — 1)/ min (1 —t:) <, (2.2)

where ¢ > 1 is a fixed real number not depending on n. We say that A,, is a
graded grid if

b—a %

Z(n

tn/2+i=a+b—tn/2_i, i=1,2,...,n/2,

ti=a+ ), i=0,1,...,n/2;

(2.3)
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where n = 2k, k € IN, and r > 1 is a fixed real number not depending on
n. Here the parameter r characterizes the nonuniformity of the grid: if r =1
then we obtain a uniform grid, if > 1 then the grid points tg,%1,...,t, are
more densely clustered near the endpoints a and b of the interval [a, b]. Notice
that for r > 1 the graded grid is not quasi-uniform.

Let S»,1(A,) be the set of quadratic splines with defect 1 on the grid (2.1):

S21(An) = {z € C'[a,b €m, i=0,1,...,n—1}. (2.4)

] : z|[t,’ ,t,’+1]

Here 7o denotes the set of all polynomials of degree not exceeding 2 and
Clla,b] is set of all continuously differentiable functions y(t), t € [a,b]. Let

To=a; x=ti1+nlti—ti-1), i=1,2,....n Tpp1 =D, (2.5)

where n € (0,1) is a fixed real number not depending on n.

For given n € IN we look for an approximation y, to the solution y of
equation (1.1) in the linear space Sa1(A,) determining y,, € S31(A,) from
the conditions

b
An(z;) = /K(xi,s)yn(s)ds + fz;), i=0,1,...,n+1. (2.6)

Note that the conditions (2.6) determine a system of linear equations which
exact form depends on the choice of a basis in the space S2.1(A,). For exam-
ple, we can seek the approximation y, € S»1(A;) in the form

n+1
yn(t) = Y _ ciBai(t), t€[a,b], (2.7)
i=0

where {c;} are constants to be determined and {B>;} is the B-spline basis in
the space Sa1(Ay) (cf. [15]):

(t —ti2)?/(ti — ti—2)(tio1 —ti—2), t € [ti—2,ti1);
(t—ti2)(t: — 1) (tip1 — )t —ti1)
By (t)=4 (ti—tic2)(ti —tic1)  (fiv1 — tic1)(ti —ti-1)’
(tigr — )%/ (tipr — tic1) (big1 — ta), € € [ti tig1);

0, otherwise,

t € [t,’_l, ti);

with i =0,1,...,n, and

Baanlt) = { (t —tn-1)?/(tn — ta1)?, t € [tn-1,tn); 29)

0, otherwise.
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Here t_o = t_1 = to, tp42 = tny1 = tp, t; € Ap, @ = 0,1,...,n. Now
the collocation conditions (2.6) yield an (n +2) x (n + 2) linear system with
respect to unknowns cg, ¢y, ..., C,41; Once these unknowns have been found,
the approximation y,, can be composed by formula (2.7).

Theorem 2.1 (see [7; 13]). Let the assumptions (1.2) and (1.3) hold and let
f € C*P[a,b]. Let the homogeneous integral equation (1.10), corresponding to
the equation (1.1) by f = 0, have only the trivial solution y = 0. Finally, let
the interpolation points (2.5) with the quasi-uniform grid {(2.1),(2.2)} or the
graded grid {(2.1), (2.3)} be used.

Then equation (1.1) has a unique solution y € Cla,b] and for all sufficiently
large n € IN, say n > ng, the collocation conditions (2.6) determine a unique
approzimation y, € S21(A,) toy. For n > ng the following error estimate
holds:

lyn — yllcfa,s < €On, (2.10)

where ¢ is a positive constant not depending on n and
6p =n®7P, (2.11)

if the quasi-uniform grid {(2.1)),((2.2)} is used, and

—r(3—5) _
6n:{ n , 1<r<3/(3-5), 212)

n_35 r>3/(3_ﬁ)a
if the graded grid {(2.1),(2.3)} is used.

3. EIGENVALUE PROBLEM
We consider eigenvalue problem (1.10), where the kernel K has the form (1.2).

For given n € IN we construct an approximating eigenvalue problem to (1.10)
in the form

b
Ayn(zi) = /K(mi,s)yn(s)ds, 1=0,1,...,n+1, (3.1)

where y,, € S2,1(A;) and the interpolation points {z;} are defined by (2.5).
Choosing a basis in the space S.1(A,,) and presenting y,, as a linear combina-
tion of basis functions, (3.1) will take the form of finite dimensional eigenvalue
problem of linear algebra. In particular, we may use the presentation (2.7)
with the basis functions {(2.8),(2.9)}.

For a Banach space E we denote by L(E) the Banach space of all linear
bounded operators A : E — E with the norm

Al c) = sup{llAz|| : z € B, |lz]| = 1}.
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For the operator T defined by (1.10) it follows from (1.2) — (1.6) that T €
L(Cla, b)) and T is compact as an operator from C[a, b] to C[a, b]. We consider
equation (1.10) as the operator equation Ay = T'y in the Banach space C[a, b].
Whereas T : Cla,b] = Cla, b] is compact, all eigenvalues of T form a discrete
set in the complex plane £ with zero as the only possible limit and every point
Ao # 0 of the spectrum o(T') of T is an isolated eigenvalue of T' with finite
algebraic multiplicity. Recall that a complex number )¢ is called an eigenvalue
of T if there exists an element y° € C[a, b], y° # 0, such that Ty° = X\oy°; the
element y° is called an eigenelement (eigenfunction) of T'. For every nonzero
eigenvalue \g of T' both the eigenspace

N(AOI - T) = {y € C[a, b] : (/\0[ — T)y = 0}
and generalized eigenspace
W =W(X,T)=N(XI-T)")

of T' corresponding to the eigenvalue A\ are finite dimensional. Here I is the
identity mapping in the space C[a,b] and v = v(\,T) is the rank of the
eigenvalue )y, that is, the least positive integer such that

N((AoI =T)") = N((AoI = T)H1).

The dimension p of W is called the algebraic multiplicity of A\g : p =
w(ho, T) = dim W (Ao, T).
Further, we consider eigenvalue problem (3.1) as the operator equation

)‘yn = PnTyn

in the Banach space C[a,b]. Here P, : C[a,b] — CJa,b] is an interpolation
operator which assigns to every function y € Cla,b] its piecewise quadratic
interpolation function P,y € S21(A,) C Cla,b] satisfying the conditions
(Pay)(z;) = y(zi), i = 0,1,...,n + 1. For both the quasi-uniform grid
{(2.1),(2.2)} and the graded grid {(2.1)(2.3)} we obtain (see [7; 13]) that
P, € L(CJa,b]) implying P,T € £(C][a,b]), n € IN.

Theorem 3.1. Let the assumptions (1.2) and (1.3) hold and let the interpo-
lation nodes (2.5) with grid points {(2.1), (2.2)} or {(2.1),(2.3)} be used.
Then for every nonzero eigenvalue Ao of T (of equation (1.10)) there exists
a sequence {\,} of eigenvalues A\, of P,T (of equations (3.1)) such that A, =
Ao for n — oco. Conversely, if {\,} is a sequence of eigenvalues X, of P,T,
and Ao # 0 is an accumulation point for {\,}, then Ao is an eigenvalue of T.

Proof.  On the basis of [7; 13] we obtain that for both the quasi-uniform grid
{(2.1),(2.2)} and the graded grid {(2.1),(2.3)},

||Pn||E(C[a,b]) <a, n=L2,..., (32)
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and
lly = Payllcpas < c26n  Vy € C*Pla,b], 0 < B <3, (3.3)

where ¢; and ¢y are some positive constants not depending on n, and §,, is
given by (2.11) or (2.12), corresponding to the grid {(2.1),(2.2) } or {(2.1),(2.3)},
respectively. Since the space C®[a, b] of all 3 times continuously differentiable
functions on [a, b] belongs to C%*[a,b], we have according to (3.3) that

||y - Pny”C[a,b] < 625n v Y€ 03[0‘5 b]

Therefore, |ly — Payllciapy = 0 if n — oo for every y € C®[a,b]. Since
C3[a,b] is dense in C|a,b], we have by (3.2) and Banach-Steinhaus theorem
that ||y — Poyllcia,s) — 0, if n — oo for every y € Cla,b]. From this and the
compactness of the operator T' € £(C[a, b]) we obtain

||T — PnT”[,(C[a,b]) — 0, n—oo. (3.4)

Now the assertions of Theorem 3.1 follow from general results about the con-
vergence of approximate eigenvalues, proved under the assumptions of regular
or compact approximation of operators (see, for example, [8; 9; 17]). In par-
ticular, we can apply Theorem 5.1 from [19], p. 68. W

Remark 3.1. Let Ag be some compact in the complex plane €' so that 0 € Ag
and Ag is the unique eigenvalue of T in Ag. It follows from Theorem 3.1 that
for all sufficiently large n € IV, say n > ng, at least one eigenvalue A, of P,T
belongs to Ag. Moreover, on the basis of (3.4) we obtain (cf. [19], p. 68) that
the sum of the algebraic multiplicities u(A,, P,T) of all eigenvalues A, of P, T
in Ag is equal to the algebraic multiplicity u(Ag,T") of the eigenvalue Ag of T':

> Oy Py T) = p(Xo, T), n>n,.
AniAn €a(PrT)NAg

Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Let Ao # 0
be an eigenvalue of T (of equation (1.10)) and let A9 C € be some compact,
such that 0 € Ag and \g € Ay is the unique eigenvalue of T in Ag. Finally, let
{An} be a sequence of eigenvalues A, of P,T (of equations (3.1)), such that
An = Ag for n — oo.

Then for all sufficiently large n € IN, say n > ng, the following estimates
hold:

An = o] < ad7 Ay = No| < e85, X = Do| < c30,. (3.5)

Here c¢1, co and c3 are some positive constants not depending on n, v =
v(Xo,T) is the rank of X, kn > 1 is the number of the different eigenvalues
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S), .. .,)\%k") of P, T in Ao, \p is the average of AP (i=1,..., k) weighted
by their algebraic multiplicities p(/\sf),PnT) = dim W()\gf),PnT),

S
i—1 =1

and 0, is defined by (2.11) or (2.12), corresponding to the quasi-uniform grid
{(2.1), (2.2)} or the graded grid {(2.1), (2.3)}, respectively.

Proof. On the basis of the convergence (3.4) it follows from the results of [8;
9; 17; 19| that

A —Xo| O, Ay = Xo| < 0K X, = X <6, (3.6)

i

with some positive constants ¢/, ¢’ and ¢’ not depending on n, and

On = sup {|ly = Puyllcrasy : ¥ € W(o, T), lyllcany =1}, ne V. (3.7)
Using Theorem 1.1 with f = 0 (see Remark 1.1) and induction by ¢, we con-
clude that N((AoI — T)%) c C®Pla,b] for i = 1,2,.... Therefore, W()\,T) C
C?Pla,b], 0 < B < 3, Ao #0, and we obtain from (3.3) and (3.7) that

0, <cd,, nelN, (3.8)

where c¢ is a positive constant not depending on n. The estimates (3.5) now
follow from (3.6) — (3.8). W

4. NUMERICAL EXAMPLES

We present two examples.

Example 4.1. Consider the integral equation

1
)= [1e-sltylopis + 56, 0<i<, (@)
0
where
s 3w, 1 11 1 1
=13 = T T i ot T f— 2T T — 3T
1O =t — o5t S5 t+40; T t 64'; t
M T i S P I@—t+2VT D) + —— 5 In(t).
128" e S B+ 5560 m®)

It is easy to check that y(t) = t>/2 is the exact solution of equation (4.1), f €
C312[0,1], and the assumptions (1.2) and (1.3) are fulfilled with g(¢,s) = 1,
k(t—s)=|t—s[*?and B =1/2.
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Example 4.2. Consider the integral equation

o) = [lt= sl tyo)ds + £0), 0<t<1, (42)
0
where
_ T, (1+vV1-t)? t?
1) = Vit 4 TS e
—th:%Ml—ﬂ4—“§ﬂ.

It is easy to check that y(t) = v/t is the exact solution of equation (4.2),
f € C®3[0,1] and the assumptions (1.1) and (1.3) are fulfilled with g(¢,s) = 1,
k(t—s)=t—s|~'/? and = 5/2.

For the numerical solution of equations (4.1) and (4.2) let n > 4 be a natural
number or an even natural number depending whether we use the quasi-
uniform grid or the graded grid. Let 0 =ty < t; < ... < t, = 1 be a partition
of the interval [a,b] = [0, 1] satisfying the condition (2.2) with some constant
g > 1 independent of n (in case of the quasi-uniform grid) or let the grid
points tg, t1, - .. ,t, be given by the formulas (2.3) with ¢ = 0,b = 1 and some
fixed real number r > 1 not depending on n (in case of the graded grid). We
define the interpolation points z;,i = 0, ...,n+1, by the formulas (2.5), where
we take n = 1/2. Under these assumptions we solved the equations (4.1) and
(4.2) numerically by the collocation method (2.6) using the presentation (2.7)
and computing exactly the integrals

1
/K(xi,s)yn(s)ds, 1=0,...,n+1,
0

with K(t,s) = k(t — s).
For the estimation of the error ||y, — y||c[0,1) We also introduce another
partition of the interval [0, 1] with the grid points 7;;, namely

tit1 —t; .

Tij =ti+ =50

i=0,....,n—1, j=0,....10.
In the following Tables 1 — 4 the estimations 5, of the norm ||yn — y||c0,1]»

en = max |yn(7ij) —y(7i;)],
0<j<10
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Table 1.
Eq. (4.1), quasi-uniform grid
| g=1 | qg=4
n | e | pn | e | Pn | En | pn
4 0.0001470 0.0004670 0.0003907

8 0.0000259 5.675 0.0000839 5.565 0.0000551 7.091
16  0.0000045 5.667 0.0000148 5.666 0.0000073 7.452
32 0.0000008 5.668 0.0000026 5.657 0.0000009 7.703
64  0.0000001 5.671 0.0000004 5.685 0.0000001 7.828
128 0.0000000 5.667 0.0000000 5.618 0.0000000 7.965

Table 2.
Eq. (4.1), graded grid
| r=1 | r=12 | r=3
n | En | Pn | En | Pn | En | Pn
4 0.0001470 0.0000754 0.0008757

8 0.0000259 5.675 0.0000094 8.009 0.0001330 6.583
16 0.0000045 5.667 0.0000011 7.939 0.0000173 7.649
32 0.0000008 5.668 0.0000001 8.002 0.0000021 7.937
64 0.0000001 5.671 0.0000000 7.925 0.0000002 8.002
128 0.0000000 5.667 0.0000000 5.755 0.0000000 7.954

and the ratios
Pn = En/2 /En

which characterize the rate of convergence of the method (2.6) are presented
for both the quasi-uniform and the graded grid.

In case of the quasi-uniform grid we have given the convergence results for
two values of the parameter ¢ (see condition (2.2)): ¢ =1 and ¢ = 4. Notice
also that for ¢ = 4 we have constructed the grid in two ways. Namely, in
the first case for n = 4 we have chosen the grid points tg = 0,¢; = 0.4,t; =
0.5,t3 = 0.6,t4, = 1, in the second case we have selected the grid points
to = 0,t1 = 0.1,t; = 0.5,t3 = 0.9,t4, = 1, and in both cases for every other
n = 8,16, ... the new grid was obtained by taking the old grid points for n/2
and the centerpoints of the subintervals corresponding to the partition of the
interval [0, 1] for n/2.

In case of the graded grid we have presented the convergence results for
three values of the parameter r (see formulas (2.3)): in case of equation (4.1)
we have taken r = 1, r = 1.2 and 7 = 3, and in case of equation (4.2) r = 1,
r=3andr =6.

From Theorem 2.1 we can derive the following convergence results: for
equation (4.1) we have 8 = 1/2 and then in case of the quasi-uniform grid the
ratio p, must be 25/2 & 5.657, and in case of the graded grid the ratio p,, must
be 2°/2 ~ 5.657,2° =8 and 22 =8 for r = 1, r = 1.2 and r = 3, respectively.
For equation (4.2) we have 8 = 5/2 and then in case of the quasi-uniform grid
the ratio p,, must be approximately v/2 ~ 1.414 and in case of the graded grid
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Table 3.
Eq. (4.2), quasi-uniform grid
| g=1 | qg=4
n | e | pn | e | Pn | En | pn
4 0.0681131 0.0967526 0.0393239
8 0.0433667 1.571 0.0584728 1.655 0.0256411 1.534
16  0.0289248 1.499 0.0379341 1.541 0.0174917 1.466
32 0.0197214 1.467 0.0255248 1.486 0.0121019 1.445
64 0.0136114 1.449 0.0174838 1.460 0.0084330 1.435
128 0.0094672 1.438 0.0121015 1.445 0.0059033 1.429
Table 4.
Eq. (4.2), graded grid
| r=1 | r=3 | r==6
n | En | Pn | En | Pn | En | Pn
4 0.0681131 0.0141109 0.0109106
8 0.0433667 1.571 0.0046903 3.008 0.0018694 5.836
16  0.0289248 1.499 0.0016290 2.879 0.0001951 9.582
32 0.0197214 1.467 0.0005733 2.841 0.0115118 0.017
64 0.0136114 1.449 0.0002024 2.832 2.0648866 0.006
128 0.0094672 1.438 0.0000715 2.830 2.9964757 0.689

the ratio p, must be v/2 ~ 1.414,2%/2 ~ 2.828 and 2® = 8 for r = 1,r = 3
and r = 6, respectively. Notice also that in case of the graded grid the values
r =12 (alsor = 3) for $ =1/2 and r = 6 for 8 = 5/2 correspond to the
best possible rate of global convergence, the third order convergence of the
method (2.6) (see {(2.10),(2.12)}).

From the Tables 1-4 we can see that the numerical results are quite well
in accord with theoretical estimations except in Table 4 where in case r = 6
we have the loss of accuracy: the error for n is bigger than the error for n/2
if n =32,n = 64 and n = 128. This shows that practical application of the
method (2.6) can lead to extra complications if dealing with weakly singular
integral equations with sufficiently strong singularity in kernel (like equation
(4.2)). The numerical results also show that if we construct the quasi-uniform
grid "wisely", i.e. if the grid is more dense near the endpoints 0 and 1 of the
domain of integration, then we can obtain almost the best possible rate of
convergence, the third order convergence (see the last column of Table 1).
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Silpnai singuliariy integraliniy lygéiy ir tikriniy reik§miy uZdavinio
sprendimas kvadratiniy kolokaciniy splainy metodu

R. Pallav, A. Pedas

Darbe sprendziama silpnai netiesiné antrojo tipo Fredholmo lygtis ir atitinkamas tikriniy
reik§miy uZdavinys. Naudojami kvazi-pastovus ir specialiai sutankéjantys tinklai. IStirtas
gauty diskretizacijy konvergavimo greitis, parodyta, kuriais atvejais §is konvergavimas yra
optimalus. Pateikti skaitinio eksperimento rezultatai, patvirtinantys teorinius rezultatus.



