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ABSTRACT

In this paper we analyze a class of equations of the form gy (z) = —g(z) zP (y(z))? where
p and ¢ are real parameters satisfying p > —1 , ¢ < —1 and g is a positive and continuous
function on [0,1]. We search for positive solutions which satisfy the boundary conditions
y'(0) =y(1) = 0.

Numerical approximations of the solution are obtained by means of a finite difference scheme
and the asymptotic expansion of the discretization error is deduced. Some numerical ex-
amples are analyzed.

Key words: singular problems, finite differences scheme, asymptotic expansion.

1. INTRODUCTION

In the present paper we consider boundary-value problems for a generalized
Emden-Fowler equation of the form

y'(z) = —g(z)2"y(z)?, 0<z <1, (1.1)
where p and ¢ are known real constants and g is continuous and positive on

[0,1]. We shall look for positive solutions of this equation on the interval [0, 1],
which satisfy certain boundary conditions.
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A problem of this type was analyzed in [2], withp=1, ¢ < 0 and g(z) =
—1/q. This problem arises in non-newtonian fluid mechanics. The solution of
the considered problem has a singularity at £ = 1 which results from the fact
that ¢ is negative and the solution must satisfy

lim y(z)=0. (1.2)

Tz—1~

The asymptotic behavior of the solutions to this problem near the sin-
gularity was analyzed in detail and it was shown that there exists an one-
parametric family of solutions of the considered equation which satisfy the
required boundary condition at the singularity. The asymptotic expansion of
this family was then used to approximate the solutions near the singularities.
In this way, we can replace the singular boundary condition at z = 1 by a
non-singular one at a certain point £ = 1 — 4. Then we can approximate
numerically the solutions of the considered family, using standard numerical
methods for initial-value problems and, by the shooting method, we can find
the specific solution which satisfies the boundary condition at = = 0, which
in this case has the form

. !
mlirg+ y'(z) = 0. (1.3)

A different approach for the same problem was developed in [5] and [6]. In
these papers, the nonlinear problem is first reduced to a sequence of linear
ones, by means of monotone iterative procedures, using a method proposed
by Mooney (see [9] and [10]). Then the linear problems are approximated by
means of finite difference schemes. In the cited papers, the convergence of the
iterative methods was analyzed and the asymptotic behavior of the solutions
near the singularity was described.

In [8] the considered approach was generalized for a wider class of problems.
It was shown that the considered methods can be applied not only to the case
p =1, but also for other values of p, such that p > —1.

Recently, in [7] we have analysed a BVP for equation (1.1) with boundary
conditions

i v(e) = i, (o) =0

In particular, we have shown for this problem how the convergence order of
the finite difference scheme depends on p and ¢. The problem that we shall
consider here has many common aspects with that one, in particular the
asymptotic behavior of the solution, as  — 1 , is the same. Therefore, in the
present paper, we shall often refer to the results of [7] an will not repeat the
proofs.

In [4] and [3] a similar method was used to approximate the solutions of sin-
gular Emden-Fowler equations, with p < 0 and ¢ > 0 (in this case the solution
has a singularity at = 0). In those papers the asymptotic behavior of the
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solutions near the singularity was studied and asymptotic error expansions
were obtained.

The main purpose of the present paper is to provide a detailed error anal-
ysis for the considered methods, in the case where ¢ < 0, when the solution
is singular at * = 1 or at both end points. We derive asymptotic error ex-
pansions which are valid for a large range of values of p and ¢ in the case of
boundary conditions (1.2), (1.3). We show that these error expansions agree
with the previous numerical experiments and use them as a basis for applying
extrapolation methods such as the E-algorithm.

In Section 2, we review the results obtained in [5] and [8] on upper and
lower solutions for the considered problem. In Section 3, we define the iter-
ative methods and analyze the asymptotic behavior of the iterates near the
singularities. In Section 4, we obtain the asymptotic error expansions, using
a method similar to the one which was used in [3]. In Section 5 some nu-
merical examples are presented and extrapolation algorithms, based on the
asymptotic error expansions, are used to accelerate the convergence. Finally,
in Section 6 we present the main conclusions of this work.

2. LOWER AND UPPER SOLUTIONS

As defined in previous papers (see for instance [5] and [8]), a lower solu-
tion (respect. upper solution) of BVP (1.1)-(1.2)-(1.3) is a function g (z) €
C?(]0,1[) N C ([0,1]) that satisfies the set of conditions

7" (z)+g (@) 2P (¥ (x))? >0 (respect. <0)
(2.1)
v (0)>0 (respect. < 0) ; y(1)=0.

We are interested in upper and lower solutions which satisfy (2.1), and whose
asymptotic behavior near the singularity is close to the one of the exact solu-
tion.

In order to fit the above conditions, we shall look for upper and lower
solutions of the form

y(z)=C(1-27%%)7, (2.2)
where C' and + are adjustable parameters.
By setting
2
= — 2.
T=1og (2.3)

we assure that 7 (z) is asymptotically equivalent to ky () when z — 1, where
k is a positive constant.

Defining v as above, by some basic computations, it is possible to find
positive constants Cy, and Cyy, such that, if C < C,, (respect. > Cypr), then
¥ (x) is a lower solution (respect. upper solution).
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Table 1.
Bounds for the coefficient C of (2.2). Here ws = (1 —7)(p+2),w2 =p+ 1,
gm = Mingepo,179(2), gm = maxgepo,119(x)-

Y1 Yu
¥ b
_ gm 2 _( M )2 ) 1

Cm = —Im Cy=[—2% if 0<y< ——
" (7(p+2)w1>7 M ¥ (p+2)wa y f TS pt2

9m 5 gm 5 . 1
Cp=—""T"""—— Cy=—""TF— 1if — < <1
" (7(p+2)w2> M (7(p+2)uu) fp+2_7

With the purpose of simplifying the notation, we shall denote by y; (z)
(respect. by y,, (z)) a lower solution (respect. upper solution).

The values of C,, and C'y; may be synthesized in the Table 1

A remarkable particular case arises when

1
= = t = = —
9m = gm = CONS a vy p+2 )

that is, when 2p + ¢ = —3. In this case, we note that C,, = Cps, meaning
that the lower and upper solution of the problem coincide and give the exact
solution:

v
a 2 ¥

T) = 1—zPt2)7 . 2.4

v = (555)” 1=a) 24

In particular, if we set p =1 and ¢ = —5 we get the solution mentioned in [2].

Many theoretical results about nonlinear boundary-value problems for se-
cond order equations are applicable to the considered problem. For example,
according to Theorem 7.5 of [12] we can assure that this problem has an
unique solution, for all the considered values of the parameters.

3. ITERATIVE METHODS AND ASYMPTOTIC BEHAVIOR OF
THE SOLUTIONS

3.1. Monotone iterative schemes

As it was pointed out in [5] and [6], the nonlinear problem (1.1) — (1.3) may
be transformed into a sequence of linear ones, using two monotone iterative
schemes, based either on the Picard or the Newton methods. Since both
mentioned methods converge to the exact solution, for k sufficiently large, the
asymptotic behavior of y, near the singularity will be similar to the asymptotic
behavior of y; in this paper, for the asymptotic analysis we shall consider the
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Picard iterative scheme, which in the case (1.1) — (1.3) has the form

Lypt1(z) =y (@) +q9(2) 2P (wi ()7 ypr1 (@)

) . (3.1)
= 9(@) 27y(@) (a0 @) = (a(@)""),
Ypp1(0) =wer1(1) =0, O<z<1, k>0,

and y; (x) is a lower solution of the form (2.2), with C = C),, where Cp, is
defined as in Table 1.

As it was is shown in [5], if we take as yo a lower solution, the iterative
scheme (3.1) converges upwards to the exact solution.

3.2. Asymptotic behavior of the Picard iterates

For the error analysis that we shall present in the next Section we need some
results about the asymptotic behavior of the Picard iterates. These results
are obtained in the same way as it was done in [7], and therefore we shall
not go here into details. First we shall analyze the homogeneous equation,
associated to (3.1):

y'(z)+b(@)y(z) =0, 0<z <1, (3.2)

where
b(z) = ¢(Cm)* ™" g (2)2? (1 - 2+2) 7", (3.3)

For all the considered values of p and ¢, equation (3.2) has a regular
singularity at £ = 1. For p < 0, the equation has an irregular singularity at
xz = 0, but if p = —m/n this irregular singularity may be transformed into a
regular one by means of the variable transformation z = ¢!/, In both cases,
the roots of the indicial equation associated to (3.2) can be computed. Let p;
and ps be the roots of the indicial equation as  — 1, then we have p; +p2 = 1,
p1 < 0, po > 1. Using these roots we can express two independent solutions
of (3.2) in the form of series and analyse their behavior. This analysis leads
us to the following lemma.

Lemma 3.1. Let us consider equation (3.2), where g < —1, p > —1 and g (z)
are such that the roots of the indicial equation do not differ by an integer not
an integer; if p < 0, let p be rational.

Then, there exists an unique solution o of (3.2), such that

lim a(z) =1; lim o (z) = 0; (3.4)

z—0t z—0t

and an unique solution B which satisfies

lim (1—2)""28(z) = 1. (3.5)

rz—1—
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These solutions are independent and such that

lim (1 —2) " a(z) = ap;
Tz—1-

lim _§ (z) = fo,

z—0t

where ag and By are positive finite numbers.

Now the classical method of the Green function enables us to express the
Picard iterate yg41, which is the solution of (3.1), in terms of the preceding
iterate vy, and the functions «, 3, described in Lemma 3.1. According to this
method we can write

wine) = [Glas)feyds = 22 / as % 565263,
’ (3.6)
where

fi @) = g (@) a"yi (@) ¢ (Co)" (L=2) 7" = (e @)"Y]. (37)

Knowing the asymptotic behavior of yo(z), which is a lower solution, for-
mula (3.6) and Lemma 3.1 enable us to obtain the asymptotic properties of the
iterates yi, k > 1. These properties are described by the following theorem.

Theorem 3.1. Let us consider the sequence of problems (3.1) with boundary
conditions Yy, (0) = yg41 (1) =0, and p > —1; if p <0, let p be rational.

If yo(z) is a lower solution of the form (2.2), then there exist constants
Yk+1,0 and Yr11,0 such that

Yet1(T) = Yey10 + O (2P7%) , k=0,1,..., asz — 0T, (3.8)
and
Yet1(@) =Ukr10(1—2) + (@), £=0,1,..., asz—>1", (3.9)
where v = 1 E p and tg1(z) = o((1—)7).

Moreover, if y+1 < pa, where po is the greatest root of the indicial equation
at =1, we have ty1(x) = O ((1 - a:)7+1).
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4. DISCRETIZATION METHODS AND ASYMPTOTIC ERROR
EXPANSIONS

Let p = {z; =ih},_, _y be an uniform grid, with h = 1/N, and

Yrtr (z3h) o — RY

the discrete function which results from evaluating yi4+1 at gp.
In order to discretize equations (3.1), we shall substitute the derivative
Y41 (%) by the corresponding second-order central difference

1
8*Ykt1 (zi3h) = 72 (Ykt1 (Tig1s h) — 241 (T35 h) + Yrgr (i1, h)) . (4.1)

Therefore, for each k, we shall solve a linear system of difference equations
of the form

L'Git1 = 8Py (i3 B) + b (@) Ger (i h) = fi (w3 h), (4.2)

where

~ -2
Fooist) =6 @i (o) (0(Ca)*™ (1=277) 7 = G o)),
(4.3)
in order to find the unknown vector (yr+1 (#i; h));—o .y Which approximates
each continuous function yy1 (), £ > 0.
The full system must include two equations that are the discrete analogs of
the boundary conditions

Urt1 (0;h) = Yry1 (h; )

. (4.4)
gk-i—l (17 h) =0, k> 0.
Let us define, for each iterate g1 (x; h), the discretization error
Ok+1 (5 h) = Yry1 (25 ) — Yt (@), (4.5)

for z € [0,1], h > 0.

We shall first consider kK = 0. As in [7], we shall derive the asymptotic
expansion of 81 (z;h) as h — 0. If g1 (x; h) is the consistency error of the
finite-differences scheme, for the first iterate y; (x; h), defined as

e1 (3h) = 8%y (23 h) — yi (2), (4.6)

then we have
LM, (z;h) = —e1 (23h) . (4.7)
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In order to obtain an asymptotic expansion of 6, (z; h) we shall use the same
method as in [7]. The outline of this method is the following. Since 6; (x; h)
is a solution of the difference equation (4.7) and L" is an approximation of
the linear differential operator L, we look for 6 (z; h) in the form

01 (z;h) = p1 (h) a () + p2 () B () + O1p (23 h) (4.8)

where a and f are the functions referred in Lemma 3.1 (solutions of the
homogeneous equation), 61, is a particular solution of (4.7), p1 and po are
certain functions of h.

From the asymptotic properties of y;, described by Theorem 3.1, certain
conditions follow that 6y (z;h) must satisfy. In particular, making z = h in
(4.8) and considering the boundary condition yi(0) = 0, we obtain

g1 (h) e (h) + p2 (B) B (h) + 61, (h; h) = Boh?** + o (RP*1) ; (4.9)
making £ = 1 — h and considering the boundary condition at z = 1, we have
p1 (R) a (1 —h)+p2 (R) B (L —h)+61, (1= h;h) = Coh” + O (") . (4.10)

On the other hand, a particular solution 61, (z; h) of (4.7) may be computed
in the form

m—1
b1 (@ih) = 3w () K% + O (h2m),
i=1

where the ws ; coefficients are the solutions of certain boundary value prob-
lems. By analyzing these coefficients we may conclude that 6y, satisfies the
conditions

1p (h;h) = BohPt! + 0 (RPT), as h—=0 (4.11)

01, (1 —h;h) =61 087 + O (RH1). (4.12)

From the results of the previous Section, it follows that, for some constant
a1, we have a(1 —h) = anh** (14 0(1)),as h — 0, where p; is the least root of
the indicial equation, associated to (3.2). Hence,from (4.10) we may conclude
that

w1 (h) = /J/l,ohry_pl + o (h’y—p1) . (4.13)

In the same way, using (4.9) and (4.11) we may conclude that
M2 (h) = /Lz,ohp+l + o0 (hp+1) . (414)

Finally, if we substitute (4.13) and (4.14) into (4.8), we obtain the desired
expression of 61 (z; h) :

0y (z; h) = B oh™ + 0 (™), (4.15)
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where
my; =min (y— p1,p+1). (4.16)

In order to derive analogous asymptotic error expansions for iterates k =
2,3,.... we may follow a similar procedure as in [7].

Omitting further details, we would conclude that, when m; < 1, the or-
der of the main term of the discretization error remains the same as in the
first iterate. Howener, when my > 1, the expected convergence order of the
subsequent iterates is 1.

In the next Section, this conclusion is confirmed by the numerical examples.

5. NUMERICAL RESULTS

With the help of a MATHEMATICA code, a wide range of numerical tests
were performed for a large range of values of p and ¢ (for the same value of p
several values of ¢ were studied). Our purpose is to compare the theoretical
convergence order estimates with the experimental ones.

We focused our attention on the cases g(z) = 1 and g(x) = e*. The
iterative process (4.2) was carried out with four different step sizes hy = 155;
hiy1 = %, i = 1,2,3. For each h; the iterative process (4.2) was stopped at
the iterate k} that satisfies

1
2

N
(Z |yks1 (255 13) — yrs (w,-;h,-)|2> <1077 (5.1)
1

Based on these numerical results, two different estimates of the convergence
order of scheme (4.2) — (4.4), one of the estimates being a local one, e, (z;),
computed at a fixed point z; (j € {1,...,N —1}), and the other, r; being a
global estimate, in terms of error norms. For each iterate these estimates are
defined as

er(z;) =1o 5.2
() = log, [yx (255 ha) — yx (245 h3)| (5:2)
and
o max |y (x5 hs) — yk (z5; ho)|
rr, = logy 9=L N1 . (5.3)
_ max |yg (x5 ha) — yx (55 hs)|
Jj=1,...,N-1

Tables 2 (where g () = 1) and Tables 3 (where g (x) = e*) confirm that, for
all fixed values of p > 0 and for several values of g, there exist no significant
discrepancies between the theoretical orders of convergence deduced in the
previous Section and its estimates given by formulae (5.2) and (5.3).

The main term of the asymptotic error expansion remains the same even if
the condition v + 1 < ps is not satisfied.
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Table 2.
Experimental order of convergence, e1 (at £ = 0.5) and 1, and the theoretical
convergence order, for some values of p.

p=-0.7 ¢:1(0.50) 1 m1 p=-0.3 ¢1(0.50) r1 mi

g=-1.1 0.3658 0.3617  0.3000 g=-1.1 0.7291 0.7168  0.7000
qg=-—1.5 0.3824 0.3700  0.3000 qg=—-15 0.7620 0.7261  0.7000
qg=-2.0 0.4202 0.3912  0.3000 qg=-2.0 0.8009 0.7385  0.7000
qg=-2.5 0.4565 0.4067  0.3000 qg=-25 0.8264 0.9007  0.7000
qg=-3.0 0.4906 0.4177  0.3000 g=-3.0 0.8514 0.9014  0.7000

p=0.0 €1(0.50) 1 mi p=0.5 €1(0.50) 1 mi

qg=-1.1 1.0440 1.0149  1.0000 qg=-1.1 1.5159 1.3056  1.3897
qg=-1.5 1.0779 1.0275  1.0000 qg=-1.5 1.3315 1.1479  1.2849
qg=—2.5 1.0410 0.9473  1.0000 qg=—2.5 1.1379 1.0076  1.1236
q=—3.5 1.0024 0.9025 1.0000 q=—3.5 1.0402 0.9309  1.0323
qg=—4.0 1.0024 0.9034  1.0000 qg=—45 1.0059 0.9045  1.0000

p=1.0 €1(0.50) 1 mi p=20 €1(0.50) r1 mi

g=—-1.5 1.3570 1.1813  1.3247 g=-1.5 1.4104 1.2220 1.3724
qg=-2.0 1.2452 1.1004  1.2339 qg=-2.0 1.2986 1.1433  1.2847
qg=—2.5 1.1741 1.0454  1.1680 g=—4.0 1.1075 0.9947  1.1042
qg=—4.0 1.0503 0.9453  1.0475 q=—6.0 1.0274 0.9291  1.0250
qg=—6.0 1.0023 0.9068  1.0000 qg=—-8.0 1.0023 0.9092  1.0000

However, for p < 0 and when ¢ decreases, the experimental estimates of the
convergence order become significantly higher than its expected value.
An explanation for this fact is that, for a fixed negative p, the solution y ()
of (1.1) satisfies lim y(z) > 1,s0 lim y(0)? =0.
z—0+t g——0o0

Therefore, since 4" (z) = g(x)zPy (x)?, the effect of the singularity at z = 0,
due to zP, is in some sense smoothened, and the result is an increasing of the
experimental order of convergence.

Table 3.
Experimental order of convergence, e (at £ = 0.5) and r1, and the theoretical
convergence order, for some values of p.

p=-0.7 ¢1(0.50) r1 mi p=1.0 €1(0.50) 1 mi

g=-1.1 0.3609 0.3581  0.3000 qg=—-15 1.8159 1.5606  1.8571
qg=-1.5 0.3757 0.3649  0.3000 qg=-2.0 1.7593 1.5301  1.7995
qg=—-2.0 0.4015 0.3824  0.3000 qg=-25 1.7218 1.5075  1.7563
qg=—2.5 0.4211 0.3948  0.3000 qg=—4.0 1.6526 1.4637  1.6747
qg=-3.0 0.4365 0.4032  0.3000 qg=—6.0 1.6582 1.4803 1.6774

Fig. 1 illustrates this fact for g () = 1. The graphic on Fig.2 shows how
the convergence order depends on ¢ for a fixed positive value of p (p = 0.75).
In all examples concerning the case g (x) = 1, for a fixed value of p we have
chosen some values of ¢ such that ¢ # —2p — 3 ( we have not considered here
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the cases where the exact solution is known). The results obtained in the case
g (z) = e show that, when p > 0 the form of g does not affect the convergence
order (as it could be expected from the theoretical values). However, when
p < 0, we obtain for g (x) = e* a higher convergence order than for g (z) = 1,
if the same values of p and ¢ are considered (see for instance the Tables2 and
3 p=-0.7).

0.7 15 "
0.65 '
0.6 1.4
[ ]
0.55 1.3
0.5 1.2 L4
0. 45 1.1
[ ] .
0.4 . L °
8 7 6 5 4 3 2 -1 -8 7 6 5 -4 3 2 1
q q
Figure 1. Plot of the estimate of the Figure 2. Plots of the estimate of
convergence order, e1 (0.50), computed the convergence order, e; (0.50), com-
for several values of q. Here p = —0.7 puted for several values of gq. Here
and g(z) = 1. p=—0.75 and g (z) = 1.
For each sequence of aproximations
e (z55h01) Yk (z55h2) Yk (T3 h3) , ye (T3 ha) 5 (5.4)

the E-algorithm may be applied to accelerate its convergence. The E-algorithm
is a general extrapolation procedure introduced by C.Brezinski which is de-
scribed, for example, in [1]. Tt generalizes classical methods like the Richard-
son extrapolation but it has the advantage that it can be applied to singular
cases like the present ones, provided that an asymptotic error expansion is
known.

Let the initial sequence be S, = E(g") = Yrz41 (@55 hn), n =0,1,2,. .., "max
and let us suppose that the discretization error allows an asymptotic expansion
of the form

Ykzy, (%55 hn) = y(25) = a191(n) + a2g2(n) + - - + akgr(n)- (5.5)

Then, at each step of the E-algorithm, we obtain a new sequence E,(c") of
approximations. The number of steps that may be performed for a given
sequence is the number of known terms of the asymptotic error expansion
(5.5).

In ([3; 4; 7]) we have observed that the E-algorithm provides a significant
improvement of the accuracy, when asymptotic error expansions are known.

As an illustration of the efficiency of this process, when applied to our case,
we selected two examples, where the exact solution is given by (2.4), that is,
when 2p+ ¢ = —3 and g (z) = 1. The results are displayed in Tables 4 and 5.
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Table 4.
Components of the E-array in the case p = —0.55 , ¢ = —1.9, g (z) = 1. In this case,
the exact solution, up to 9 digits, is y (0.5) = 0.961792981 and therefore

the module of the absolute error of E§°) is approximately 6.13 x 10~%.

i hi B =yyey1(0.50h) B®
0 5 0.950761418 0.962406112
1 g 0.953881697

Table 5.
Components of the E-array in the case p = 1.2, ¢ = —5.4, g (z) = 1. In this case,
the exact solution, up to 9 digits, is y (0.5) = 0.852826787 and the absolute error

of E£0) is approximately 5.8 x 10~7.

i hi B =yyeqq(0.50;h) E®
0 755 0.852126852 0.852827370
L w5 0.852477111

In both cases, only the main term of the asymptotic error expansion is
known; therefore, we use just two different stepsizes and perform only one
step of the extrapolation process.

The effect of the convergence acceleration may then be seen by comparing

the absolute error of the terms of Ey) with the absolute errors of Eéi).

In both selected cases, E(()i) = S; = yrr+1 (0.50;279721072), i = 0, 1.

In the first case, we have p = —0.55 and ¢ = —1.9; therefore, from formula
(4.15), we obtain gy (n) = (hn)"*.
In the second case, p = 1.2 and ¢ = —5.4; hence, from the same formula,

we have g1 (n) = hy,.

As it was expected, the extrapolation procedure significantly improves the
results. The higher order of convergence of the second example results in a
high in the value of F\*

gher accuracy in the value ot F; ™.

6. CONCLUSIONS

In this paper we have dealt with a class of singular boundary value problems
for second order nonlinear ordinary differential equations. We have analyzed
the dependence of the solution on two real parameters p and ¢, and also on a
certain regular function g. The theoretical analysis of the problem was based
on its reduction to a monotone sequence of linear problems by means of
the Picard method. Then we have obtained series expansions of the Picard
iterates near the singularities at the endpoints. This approach enabled us
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to obtain information about the asymptotic behavior of the solution, which
agrees with the results obtained in [2] , for a particular case. For the numerical
approximation of the linear problems we have applied the finite difference
method. Then using the same technique as in [7], we have analyzed the
discretization error of this method and obtained formulas for the convergence
order. As it could be expected, this order depends on p and ¢ and is closely
related to the asymptotic behavior of the solution near the singularities.The
lowest convergence order was obtained in the cases where p is negative (in this
case, we have shown that the convergence order is p + 1). When p > 0, the
convergence order is not less than 1 and depends strongly on ¢q. These results
were obtained theoretically ant then confirmed by numerical experiments.

Based on these asymptotic error expansions, convergence acceleration was
carried out using the E-algorithm. The presented examples show that this
method indeed improves the accuracy of the numerical results.

As it was pointed out in [6], the convergence of the finite-difference meth-
ods for singular boundary value problems may be significantly improved by
introducing an adequate variable substitution. In some cases, this method
provides more accurate results than the ones obtained in the present paper.
However, the considered method of variable substitution is not applicable to
all the considered cases, for example, it does not work when p < 0 . In such
cases, the best way to obtain an accurate approximation is to apply the finite
difference method to the original equation and improve the convergence by
means of extrapolation, as proposed in the present paper.
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Singuliariyjy krastiniy uZdaviniy skaitiniai metodai ir paklaidy
jveréiai

P.M. Lima, A.M. Oliveira

Nagrinéjama viena klasé antrosios eilés netiesiniy diferencialiniy lyg¢iy su krastine salyga.
Uzdavinys yra singuliarusis viename arba abiejuose intervalo galuose. Siulomas skaitinis

metodas taikytinas atskiriems uzdaviniy klasés atvejams. Darbas tesia ankstesnius autoriy
darby tyrimus. Pateikti skaitinio eksperimento rezultatai, patvirtinantys teorinius jvercius.



