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Abstract. This work deals with the problem of choosing a time step for the nu-
merical solution of boundary value problems for parabolic equations. The problem
solution is derived using the fully implicit scheme, whereas a time step is selected
via explicit calculations. The selection strategy consists of the following two stages.
At the first stage, we employ explicit calculations for selecting the appropriate time
step. At the second stage, using the implicit scheme, we calculate the solution at a
new time level. This solution should be close to the solution of our problem at this
time level with a prescribed accuracy. Such an algorithm leads to explicit formulas
for the calculation of the time step and takes into account both the dynamics of the
problem solution and changes in coefficients of the equation and in its right-hand side.
The same formulas for the evaluation of the time step are obtained by using a com-
parison of two approximate solutions, which are obtained using the explicit scheme
with the primary time step and the step that is reduced by half. Numerical results
are presented for a model parabolic boundary value problem, which demonstrate the
robustness of the developed algorithm for the time step selection.

Keywords: parabolic equation, finite difference schemes, explicit schemes, implicit schemes,

time step.
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1 Introduction

In numerically solving boundary value problems for time-dependent equations,
emphasis is on discretizations in time [1,2,7]. For parabolic equations of second
order, unconditionally stable schemes are constructed using implicit approxi-
mations [9, 10, 11]. Two-level schemes are commonly used in computational
practice, whereas multilevel schemes occur more rarely. For unconditionally
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stable schemes, a time step is selected only due to the accuracy of the approx-
imate solution.

The problem of how to control the time step is relatively well resolved for
the numerical solution of the Cauchy problem for systems of differential equa-
tions [3, 5, 6]. The basic approach involves the following stages. First, we per-
form additional calculations in order to estimate the error of the approximate
solution at a new time level. Further, a time step is estimated using the theo-
retical asymptotic dependence of accuracy on a time step. After that we decide
whether it is necessary to correct the time step and to repeat calculations.

Additional calculations for estimating the error of the approximate solution
may be performed in a different way. In particular, it is possible to obtain an
approximate solution using two different schemes that have the same theoretical
order of accuracy. The most famous example of this strategy involves the
solution of the problem on a separate time interval using a preliminary step
(the first solution) and the step reduced by half (the second solution). In
numerically solving the Cauchy problem for systems of ordinary differential
equations, there are are also applied nested methods, where two approximate
solutions of different orders of accuracy are compared.

In the above-mentioned methods of selecting a time step, a posteriori esti-
mation of accuracy is employed. In this case, we decide whether or not this time
step is acceptable. If so, we must determine by how much we should increase
the time step for future calculations, or if not, by how much we should reduce
the time step and re-calculate the solution. Such strategies can be also applied
to the approximate solution of unsteady boundary value problems using a more
advanced a posteriori analysis [4, 8, 13].

The conventional technology to select the time step is based on a prediction
of the time step using an error analysis under the assumption that the error
does not vary essentially in time. Further the predicted time step is applied
for performing calculations. At the final stage, analysing the solution obtained
at the new time level, we make the decision whether the selected step and the
solution at the new time level itself are acceptable, or the step is too large and
the solution is not appropriate. In the latter case, we take a smaller time step
and calculations are repeated. In predicting the time step, the procedure is of
a priori nature, whereas at the stage of obtaining the solution and selecting the
time step procedure, we make a posteriori decision, i.e., we conduct calculations
with the predicted step and then either accept it or choose a new time step
with the following repetition of calculations.

In our work, we propose a new technology how to select the time step,
which focuses on the approximate solution of boundary value problems for
parabolic equations. For such problems, we apply the implicit approximation
in time of first (or rarely second) order. Explicit schemes have too strong
restrictions for stability on the allowable time step and so they may be too
costly for practical calculations. It should be noted that computational costs
for the implicit scheme are usually significantly higher than computational
costs for the explicit scheme. We use the specified predicted time step, and
control changes of problem parameters (coefficients of the equation, the right-
hand side). To obtain the solution at a new time level, the backward Euler
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scheme is employed. The time step at the new time level is explicitly calculated
(not the solution itself) using two previous time levels and takes into account
changes in the equation coefficients and its right-hand side. The time step at
the new time level is obtain analytically via explicit formulas. We proposed
and demonstrated some possibilities of the new algorithm, which defines an
heuristic for selection of adaptive time integration steps. The author does not
attempt to analyse the optimality (efficiency) of this new strategy.

The paper is organized as follows. In Section 2, we consider a Cauchy
problem for a system of linear ordinary differential equations that is obtained
from numerically solving boundary value problems for parabolic equations after
discretization in space. For the approximate solution, estimates for stability
are presented along with estimates for accuracy in the corresponding Hilbert
space. Formulas for the selection of a time step are obtained in Section 3 using
a comparison of the problem solutions corresponding to the forward time level
and backward one. In Section 4, we show that similar expressions for a time
step can be obtained via making a comparison of the solutions derived with one
time step and two half steps. Section 5 presents numerical results for a model
boundary value problem for a one-dimensional parabolic equation obtained on
the basis of the developed algorithm for selecting a time step. In Section 6, we
discuss the more general problems.

2 Model Problem

Let us consider the Cauchy problem for the linear equation

du

dt
+A(t)u = f(t), 0 < t ≤ T, (2.1)

supplemented with the initial condition

u(0) = u0. (2.2)

The problem is investigated in a finite-dimensional Hilbert space H. Assume
that

A(t) ≥ 0

in H. Due to the non-negativity of the operator A, for the problem (2.1), (2.2),
we have the following estimate for stability with respect for the initial data and
the right-hand side: ∥∥u(t)

∥∥ ≤ ‖u0‖+

∫ t

0

∥∥f(θ)
∥∥dθ. (2.3)

The problem (2.1), (2.2) results from finite difference, finite volume or finite
element approximations (lumped masses scheme [12]) for numerically solving
boundary value problems for a parabolic equation of second order. In this
problem, an unknown function u(x, t) satisfies the equation

∂u

∂t
−

m∑
α=1

∂

∂xα

(
k(x, t)

∂u

∂xα

)
+ c(x, t)u = f(x, t), x ∈ Ω, 0 < t ≤ T,
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where k ≤ k(x) ≤ k, x ∈ Ω, k > 0, c(x, t) ≥ 0. The equation is complemented
by the Dirichlet boundary conditions

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t ≤ T,

and the initial condition

u(x, 0) = u0(x), x ∈ Ω.

To solve numerically this time-dependent problem, we introduce a non-
uniform grid in time:

t0 = 0, tn+1 = tn + τn+1, n = 0, 1, . . . , N − 1, tN = T.

We will employ notation fn = f(tn). For the problem (2.1), (2.2), we apply
the fully implicit scheme, where the transition from the current time level to
the next one is performed as follows:

yn+1 − yn
τn+1

+An+1yn+1 = fn+1, n = 0, 1, . . . , N − 1, (2.4)

starting from the initial condition

y0 = u0. (2.5)

Under the restriction An+1 ≥ 0, from (2.4), it follows immediately that the
approximate solution satisfies the level-wise estimate

‖yn+1‖ ≤ ‖yn‖+ τn+1‖fn+1‖.

Thus, we obtain the discrete analog of the estimate (2.3):

‖yn+1‖ ≤ ‖u0‖+

n∑
k=0

τk+1‖fk+1‖ (2.6)

corresponding to the problem (2.4), (2.5). For the error zn = yn − un of the
approximate solution, we have the problem

zn+1 − zn
τn+1

+An+1zn+1 = ψn+1, n = 0, 1, . . . , N − 1, z0 = 0.

Here ψn+1 stands for the truncation error:

ψn+1 = fn+1 −
un+1 − un
τn+1

+An+1un+1. (2.7)

Similarly to (2.6), we get the estimate for the error:

‖zn+1‖ ≤
n∑
k=0

τk+1‖ψk+1‖. (2.8)

Math. Model. Anal., 20(1):94–111, 2015.



98 P.N. Vabishchevich

If ‖ψk+1‖ ≤ δ, then for the error, we have

‖zn+1‖ ≤ δtn+1.

Therefore, to control the error, we can employ the summarized error τn+1δ over
the interval tn ≤ t ≤ tn+1. In this case, a value δ defines the same level of the
error over the entire interval of integration.

The main feature of our approach is that in numerical solving time-depen-
dent problems the computations are done by using the stable implicit scheme.
The explicit schemes are used only virtually (theoretically) in order to estimate
residual of the implicit scheme and therefore the stability is fully defined by
the properties of the basic implicit scheme.

It is clear that the proposed strategy for choosing the time step is heuristic.
It is based on the assumption that the approximate solution of the unsteady
problem, obtained using the implicit scheme, at the transition the the new
time level is close in sense of accuracy to the approximate solution of the same
problem, obtained using the explicit scheme with the same approximation order
as the implicit scheme.

The proposed global strategy of using low-cost explicit schemes to estimate
the time step for implicit schemes in solving IVBP for parabolic equations is
illustrated by the example with the explicit and implicit Euler schemes, which
are of the first-order convergence in time. We also provide an example of using
explicit approximations of the second-order convergence for the evaluation of
the time step in the solution of parabolic problems using the Crank–Nicolson
scheme.

3 Algorithm for Estimation of a Time Step

In view of the estimates for the error of the approximate solution (2.8), the
accumulation of the error during the transition from the time level tn to a new
temporary level tn+1 is governed by the rule

‖zn+1‖ ≤ ‖zn‖+ τn+1‖ψn+1‖.

Because of this, we have to control the local error ψn+1.
If we can calculate the truncation error ψn+1, then it will be possible to get

an a posteriori estimate of the error. Comparing ‖ψn+1‖ with the prescribed
error level δ, this makes possible to evaluate the quality of the choice of the
time step τn+1. Namely, if ‖ψn+1‖ is much larger (smaller) than δ, then the
time step is taken too large (small), and if ‖ψn+1‖ is close to δ, then this time
step is optimal. Thus, we want

τn+1 : ‖ψn+1‖ ≈ δ. (3.1)

The problem is that we cannot evaluate the truncation error, since it is de-
termined using the exact solution that is unknown. Because of this, we must
focus on some estimates for the truncation error that guarantee the fulfilment
of (3.1).

The general approach to the adaptive choice of the time step for solving
unsteady problems includes the following key elements:
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• performing a selection of the predicted time step via an analysis of the
solution from the previous time levels;

• conducting calculations with the predicted time step;

• conducting an analysis for the accuracy of the obtained approximate so-
lution and carrying out the recalculation with a smaller time step if nec-
essary.

This general strategy is usually implemented (see, e.g, [3,5,6]) using the asymp-
totic analysis for the error of the approximate solution under the assumption
that the error does not vary essentially in time. The main features of our
approach to selecting the time step are presented below.

In our case, the predicted time step is fixed. To estimate the step at the
new time level (during the transition from the time level tn to the next one
tn+1), we focus on the previous time step τn = tn − tn−1. First of all, we are
interested in the possibility to employ a larger time step at the new time level.
In view of this, the predicted time step is defined as follows:

τ̃n+1 = γτn,

where γ is a numerical parameter. The factor γ for the maximum increase of
the time step is defined, for example, to be equal to 1.25 or 1.5. The problem
parameters (the coefficients of the equation and the right-hand side) are esti-
mated over the interval [tn, tn + τ̃n+1]. In estimating the time step, we should
not miss the time moment, where essential changes in the parameters of the
problem are observed.

The choice of the time step under the restriction τn+1 ≤ τ̃n+1 is performed
using calculation formulas based on the implicit error estimate at the new time
level. The approximate solution at the new time level is evaluated by the
implicit scheme (2.4), whereas estimating the time step is carried out via the
explicit scheme. Both the implicit and explicit schemes have the same order
of approximation and they are considered with the same initial conditions (at
t = tn). We perform a small number (one or two) of time steps, and therefore,
possible computational instability for the explicit scheme has no time to appear.
Because of this, we can expect that such approximate solutions are close to each
other. On the basis of this closeness, we evaluate the error of the approximate
solution and obtain the calculation formula for the time step.

Among possible variants for the correction of the time step, we consider the
following technique. The step τn+1 is selected from the conditions:

Forward step. Using the explicit scheme, we find the auxiliary solution vn+1

at the time level tn+1;

Backward step. From the obtained vn+1, applying backward in time consid-
eration, we determine vn at the time level tn via explicit formulas;

Step selecting. The step τn+1 is evaluated via closeness between vn and yn.

In fact, we carry out the back analysis of the error of the approximate solution
over the interval tn ≤ t ≤ tn+1 using two schemes (explicit and implicit) of the
same accuracy.

Math. Model. Anal., 20(1):94–111, 2015.
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Let us present the formulas for selecting a time step. The solution vn+1 is
determined from the equation

vn+1 − yn
τn+1

+Anyn = fn. (3.2)

For vn, we have
vn+1 − vn
τn+1

+An+1vn+1 = fn+1. (3.3)

From (3.2), (3.3), we immediately get

vn−yn = τn+1(An+1−An)yn−τn+1(fn+1−fn)+τ2n+1An+1(fn−Anyn). (3.4)

The first two terms are associated with the time derivative applied to the
problem operator and to the right-hand side. To evaluate them approximately,
it seems reasonable to use the time step from the previous time level. But this
may be inconvenient to implement. For instance, we have

τn+1(fn+1 − fn) = τ2n+1

fn+1 − fn
τn+1

,

and therefore we have to evaluate the difference derivative of the right-hand
side for tn ≤ t ≤ tn+1. The problem is that the derivation of such estimates
involves the unknown value tn+1. The simplest approach is to evaluate this
derivative using the previous time step:

fn+1 − fn
τn+1

≈ f(tn + τn)− fn
τn

.

But in this case, if τn+1 > τn , then we cannot detect significant changes in the
right-hand side for tn + τn ≤ t ≤ tn + τn+1.

To resolve the problem, it is possible to use the standard methods available
to control a time step for numerically solving time-dependent problems. The
first method restricts the growth of the time step with respect to the previous
value. We set

τn+1 ≤ γτn, (3.5)

where γ > 1, introduced above,is a numerical parameter controlling the increase
of the time step. The second requirement is that the step cannot be too small:

τn+1 ≥ τ0, (3.6)

where τ0 is a specified minimum time step.
Under the assumption (3.5), we can estimate the time derivative of the

right-hand side, putting

fn+1 − fn
τn+1

≈ f(tn + γτn)− fn
γτn

.

Therefore

τn+1(fn+1 − fn) ≈
τ2n+1

γτn
(f̃n+1 − fn),

τn+1(An+1 −An)yn ≈
τ2n+1

γτn
(Ãn+1 −An)yn,
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where
f̃n+1 = f(tn + γτn), Ãn+1 = A(tn + γτn). (3.7)

For the last term in the right-hand side of (3.4), in view of (2.4), we have

τ2n+1An+1(fn −Anyn) =
τ2n+1

τn
An+1(yn − yn−1).

With accuracy up to O(τ3n+1), we put

τ2n+1An+1(fn −Anyn) ≈
τ2n+1

τn
Ãn+1(yn − yn−1).

With this in mind, the equality (3.4) is replaced by the approximate equality:

vn−yn≈
τ2n+1

τn

(
1

γ
(Ãn+1−An)yn −

1

γ
(f̃n+1−fn) + Ãn+1(yn−yn−1)

)
. (3.8)

The value of vn − yn we associate with the solution error over the interval
tn ≤ t ≤ tn+1. Because of this, we set

‖vn − yn‖ ≤ τn+1δ. (3.9)

From (3.8), we have

‖vn−yn‖ .
τ2n+1

τn

(
1

γ

∥∥Ãn+1−An)yn
∥∥+

1

γ
‖f̃n+1−fn‖+

∥∥Ãn+1(yn−yn−1)
∥∥) .

In view of (3.5), (3.6), (3.9), from (3.8), we obtain the following formula for
calculating the time step:

τn+1 = max
{
τ0,min{γ, γn+1}τn

}
, (3.10)

γn+1 = δ

(
1

γ

∥∥(Ãn+1 −An)yn
∥∥+

1

γ
‖f̃n+1 − fn‖+

∥∥Ãn+1(yn − yn−1)
∥∥)−1.

This formula for selecting a time step reflects clearly (see the denominator
in the expression for γn+1) corrective actions, which are related to the time-
dependence of the problem operator (the first part) and the right-hand side
(the second part) as well as to the time-variation of the solution itself (the
third part).

The above considerations are given for the derivation of formulas (3.10)
for the time step at the new time level. No direct calculations of auxiliary
variables vn+1 and vn by explicit schemes (3.2), (3.3) are conducted. To employ
a priori estimate (3.10) for the time step, we involve information on the known
solution at two previous time levels yn and yn+1 as well as the coefficients and
the right-hand side at time tn and at the next time moment tn + γτn. The
computational complexity of the algorithm for determining the time step (3.10)
can be easy estimated; for typical problems, it is small in comparison with the
implementation of the fully implicit scheme. The step is estimated through the
use of explicit schemes. Their instability is practically insignificant within two
steps.

Math. Model. Anal., 20(1):94–111, 2015.
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4 Estimation of a Time Step on the Basis of Step Dou-
bling

Above we have considered the procedure for the error estimation based on the
numerical solution of two subproblems over the intervals [tn, tn+1] and [tn+1, tn]
using explicit schemes. To solve numerically the Cauchy problem, the tradi-
tional strategy is to select an integration step using a comparison of the approx-
imate solution obtained by the preliminary step with the solution calculated
with the step reduced by half. A similar idea for evaluating truncation er-
ror using the approximate solutions on the intervals [tn, tn+1] and [tn, tn+1/2],
[tn+1/2, tn+1], we can apply to our approach for controlling the time step.

For numerically solving problem (2.1), (2.2), we use fully implicit scheme
(2.4), (2.5). We employ the explicit scheme over the interval tn ≤ t ≤ tn+1 in
order to select the time step τn+1. The selection strategy includes:

Calculation with an integer step. Using the explicit scheme, we determine
the solution vn+1 at the time level tn+1 via the step τn+1;

Calculation with a half-integer step. Using the explicit scheme, we calcu-
late the solution wn+1 at the time level tn+1 employing the step 0.5τn+1;

Step selecting. The step τn+1 is evaluated through the closeness between
vn+1 and wn+1.

For vn+1, we have (3.2), and wn+1 is determined as follows:

wn+1/2 − yn
0.5τn+1

+Anyn = fn, (4.1)

wn+1 − wn+1/2

0.5τn+1
+An+1/2wn+1/2 = fn+1/2. (4.2)

Eliminating wn+1/2 from (4.1), (4.2), we get

wn+1 = yn −
τn+1

2
(An+1/2 +An)yn

+
τn+1

2
(fn+1/2 + fn)−

τ2n+1

4
An+1/2(fn −Anyn).

Because of this, we have

vn+1 − wn+1 =
τn+1

2
(An+1/2 −An)yn

− τn+1

2
(fn+1/2 − fn) +

τ2n+1

4
An+1/2(fn −Anyn). (4.3)

In view of the above notation (3.5), we employ the approximate expressions:

τn+1

2
(fn+1/2 − fn) ≈

τ2n+1

4γτn
(f̃n+1 − fn),

τn+1

2
(An+1/2 −An)yn ≈

τ2n+1

4γτn
(Ãn+1 −An)yn.
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By (2.4), we have

τ2n+1

4
An+1/2(fn −Anyn) ≈

τ2n+1

4τn
Ãn+1(yn − yn−1).

Thus, we arrive at

vn+1 − wn+1 ≈
τ2n+1

4τn

(
1

γ
(Ãn+1 −An)yn −

1

γ
(f̃n+1 − fn) + Ãn+1(yn − yn−1)

)
.

The right-hand side of it coincides with the right-hand side of (3.8) with an
accuracy of a factor of 4. Similarly to (3.10), we can formulate the rule for
selecting the time step:

τn+1 = max
{
τ0,min{γ, γ̃n+1}τn

}
, γ̃n+1 = 4γn+1. (4.4)

In fact, we have come to the same rule for the estimation of the time step —
the factor 4 has not any essential matter.

Note that for the estimation of the time step on the basis of step dou-
bling, we solve three auxiliary problems, i.e., over three time intervals [tn, tn+1],
[tn, tn+1/2], [tn+1/2, tn+1]. If we use the forward–backward estimation, then we
solve only two auxiliary problems, i.e., over two time intervals [tn, tn+1] and
[tn+1, tn]. In view of this, the forward–backward estimation of a time step
seems to be more preferable.

5 Numerical Experiments

The following methodological calculations demonstrate automatic adaptation
of the computational algorithm to the basic features of the parabolic prob-
lems. It’s only a small part an overall review of the problems of the adaptive
selection of the time step, but it is absolutely necessary preliminary study.
The investigation of the necessity to use variable time steps, the effect of the
adaptation the time steps on the accuracy of the approximate solution, compu-
tational efficiency of various strategies of choice of the time step in the solution
of time-dependent problems requires a separate consideration.

To demonstrate the performance of the proposed algorithm (3.5), (3.9) for
selecting a time step based on the implicit scheme for solving the problem
(2.1), (2.2), let us consider the boundary value problem for a one-dimensional
parabolic equation. Let u(x, t) satisfies the equation

∂u

∂t
− ∂2u

∂x2
+ p(t)u = f(t), 0 < x < 1, 0 < t ≤ T, (5.1)

as well as the boundary and the initial conditions:

u(0, t) = 0, u(1, t) = 0, 0 < t ≤ T, (5.2)

u(x, 0) = u0(x), 0 < x < 1. (5.3)

To solve approximately the problem (5.1)–(5.3), we apply finite difference
discretization in space. Let us introduce a uniform grid with a step h:

ω̄ = {x | x = ih, i = 0, 1, . . . ,M, Mh = 1},

Math. Model. Anal., 20(1):94–111, 2015.
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and ω is the set of interior grid points, whereas ∂ω is the set of boundary points
(ω̄ = ω ∪ ∂ω). On the set of grid functions such that u(x) = 0, x /∈ ω, we
introduce a Hilbert space H, where the inner product and the norm are defined
as:

(u, v) =
∑
x∈ω

u(x)v(x)h, ‖u‖ = (u, u)1/2.

The grid operator A(t) is written as follows:

Au = − 1

h2
(
u(x+ h)− 2u(x) + u(x− h)

)
+ p(t)u(x), x ∈ ω,

on the set of functions u(x) = 0, x ∈ ∂ω. The operator A(t) is self-adjoint,
and if p(t) ≥ 0, then it is positive definite in H [9, 10, 11]. Thus, after the
spatial discretization of (5.1)–(5.3), we arrive to the problem (2.1), (2.2). The
Dirichlet boundary conditions are simply injected into this grid operator during
the calculations.

As a test problem, we consider the problem (5.1)–(5.3) with T = 0.1 and
the discontinuous coefficient p(t) and the discontinuous f(t) defined as follows:

p(t) =

{
100t, 0 < t ≤ 0.075,

0, 0.075 < t ≤ 0.1,
f(t) =

{
0, 0 < t ≤ 0.05,

10e−(t−0.05), 0.05 < t ≤ 0.1.

The problem is solved on the grid with M = 100, the calculations are performed
using the sufficiently small time step τ1 = τ0 = 1 · 10−6.

First, we consider the case, where the initial condition (5.3) is taken in the
following form:

u0(x) = sin(πx), 0 < x < 1.

If we specify the error level δ = 0.1 and the parameter γ = 1.5, then the time-
history of the time step produced by the algorithm (3.7), (3.10) has the form
depicted in Fig. 1. The total number of time steps is N = 268.

Figure 1. The time-history of the time step: δ = 0.1, N = 268.

In this figure, we observe essential changes in the value the time step at t =
0.05 and t = 0.075, i.e., at the time moments corresponding to discontinuities in
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the right-hand side and the coefficient of the equation. In accordance with the
rule (3.6), the time step increases at the initial time stage. Let us decompose
the correcting coefficient γn+1 into three terms:

s1 =
1

γ

∥∥(Ãn+1 −An)yn
∥∥, s2 =

1

γ
‖f̃n+1 − fn‖, s3 =

∥∥Ãn+1(yn − yn−1)
∥∥.

Figure 2 demonstrates their influence.

Figure 2. Terms of the correcting coefficient.

Figure 3. Approximate solution for various δ.

The influence of the reducing error level δ on the convergence of the ap-
proximate solution is shown in Fig. 3. The approximate solution at the point
x∗ = 0.5 is depicted in this figure. For comparison, Fig. 4 presents similar data
that were obtained using the uniform grids in time.
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The number of time steps for the proposed strategy depends not only on
the magnitude of the error δ, as it was demonstrated by the data in Fig. 3.
The time step (see (3.10)) is also chosen depending on the minimal step tau0,
as well as on the step increase parameter at the new time level γ.

Figure 4. Approximate solution for various uniform time grids.

In Table 1, there are collected data for the number of time steps at different
levels of error: δ = 2−ν , ν = 0, 1, . . . , 8. It is easy to observe the theoretically
predicted linear dependence of the number of steps on the level of error. De-
pendence on the minimal step and the increase parameter seems to be rather
weak.

Table 1. The number of time steps N = N(δ, τ0, γ).

ν 0 1 2 3 4 5 6 7 8

τ0 = 10−6, γ = 1.25 109 151 173 250 419 727 1328 2523 4844
τ0 = 10−6, γ = 1.5 81 89 165 233 377 698 1313 2503 4836
τ0 = 10−6, γ = 2 61 114 145 182 365 689 1294 2504 4819
τ0 = 10−7, γ = 1.5 83 142 171 239 419 721 1367 2595 5105
τ0 = 10−5, γ = 1.5 65 92 137 208 345 622 1163 2168 3981

Special attention should be given to the influence of the initial conditions.
A typical situation is the presence of a boundary layer and this requires to use
small steps at the initial time stage. For example, the behaviour of the time
step for our model problem with initial conditions

u0(x) =

{
2x, 0 < x ≤ 0.5,

1− 2(x− 0.5), 0.5 < x < 1,

is shown in Fig. 5. Compared with Fig. 1 (smooth initial conditions), the initial
time stage is calculated with essentially smaller time steps and the total number
of steps is increased by more than a factor of 2.
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Figure 5. The time-history of the time step: δ = 0.1, N = 569.

In the region outside the neighbourhood of discontinuities of the coefficients
and the right-hand side, the time step is controlled first of all by the term s3
(see Fig. 6).

Figure 6. Correcting terms.

A more difficult situation for the numerical solution is connected with in-
consistent initial and boundary conditions. Let us consider

u0(x) = 1, 0 < x < 1.

The selection of the time step for this case is shown in Fig. 7. Up to t = 0.000856
the calculation is carried out with the minimum time step τ0 = 1 · 10−6. That
is why the total number of time steps is 2183.

We have presented the results of numerical experiments, which demonstrate
the performance of the new strategy of choice of the time step at the hard
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Figure 7. The time-history of the time step: u0(x) = 1.

conditions, i.e., discontinuity of the coefficients and the right-hand side of the
parabolic equation, the presence of the boundary layer at t = 0. Here we
discuss a calculation, which shows the possibility of the algorithm in the case
without abrupt changes of the time step.

Let us consider the problem (5.1)–(5.3), where

p(t) = 0, f(t) = cos

(
4πt

T

)
.

Changing the time step at different levels of accuracy δ is shown in Fig. 8.

Figure 8. The time-history of the time step for the periodic right-hand side.

Accounting features of the problem rerults in the choice of a smaller step
in the high-gradient region of the right-hand side and a fairly rapid transition
to a nearly periodic set of time steps.
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6 Generalizations

The above-mentioned approach to the adaptive choice of the time step is illus-
trated by considering the Cauchy problem (2.1), (2.2) and the implicit scheme
(2.4), (2.5). Possibilities of using this technique in other conditions are also
discussed.

6.1 The general problem

Consider more general problems, where instead of (2.1), we study the equation

B(t)
du

dt
+ C(t)u = g(t), 0 < t ≤ T, (6.1)

in a finite-dimensional Hilbert space H. Assume that in H

C(t) ≥ 0, B(t) = B∗(t) ≥ χE, χ > 0,

where E is the unit (identity) operator.
To solve numerically the problem (2.2), (6.1), we apply the implicit scheme

Bn+1
yn+1 − yn
τn+1

+ Cn+1yn+1 = gn+1, n = 0, 1, . . . , N − 1, (6.2)

starting from the initial condition (2.5).
The time step in (2.5), (6.2) is estimated using the solutions of the auxiliary

problems obtained by means of the explicit scheme. In the forward–backward
estimation of the time step, we solve (see (3.2), (3.3)) the following problems:

Bn
vn+1 − yn
τn+1

+ Cnyn = gn, (6.3)

Bn+1
vn+1 − vn
τn+1

+ Cn+1vn+1 = gn+1. (6.4)

Note that for using explicit schemes, we must evaluate B−1n v. We assume
that the calculation of Bnv, Bn+1v is not significant in comparison to the
implementation of the fully implicit scheme, where it is necessary to calculate
(Bn+1 + τn+1Cn+1)−1v. Just in this case our technology is appropriate to
select the time step without loss of efficiency. The equations (6.3), (6.4) may
be written in the form (3.2), (3.3) with

An = B−1n Cn, fn = B−1n gn.

This allows to conduct calculations with the time step determined by the for-
mula (3.10).

6.2 Higher-order time-stepping methods

To solve numerically boundary value problems for parabolic equations (2.1),
(2.2), in addition to fully implicit scheme (2.4), we can apply the symmetric
(Crank–Nicolson) scheme:

yn+1 − yn
τn+1

+An+1
yn+1 + yn

2
=
fn+1 + fn

2
, n = 0, 1, . . . , N − 1. (6.5)
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Its potential benefit is associated primarily with the second-order approxima-
tion in time.

To estimate the time step in the scheme (2.5), (6.5), it is necessary to
perform this using a scheme of second order, too. Continuing to be in the class
of explicit two-level schemes, instead of (3.2), (3.3), we use

vn+1 − yn
τn+1

+
An+1 +An

2
yn −

τn+1

2
A2
nyn =

fn+1 + fn
2

− τn+1

2
Anfn, (6.6)

vn+1 − vn
τn+1

+
An+1 +An

2
vn+1 +

τn+1

2
A2
nvn+1 =

fn+1 + fn
2

+
τn+1

2
Anfn.

(6.7)

Instead of (6.6), (6.7), we can apply other explicit Runge–Kutta scheme with
the second-order accuracy.

The time step is corrected using the explicit calculation formulas that are
obtained by constructing the error for the explicit scheme of the same order
of accuracy, as the main implicit scheme. In general, it is difficult to obtain
explicit formulas for the time step, and the selection strategy can be simplified.
We assume that computational costs for the implicit scheme are significantly
higher than for the explicit scheme of the same accuracy order. First, for the
given prescribed time step γτn, using explicit schemes, we solve the problem
over the intervals [tn, tn + γτn] and [tn + γτn, tn] and obtain vn. Next, we
estimate the difference between vn and yn and select the step τn+1. Finally, we
find the approximate solution yn+1 using the main numerical (implicit) scheme.

7 Conclusions

1. A strategy how to control the time step is proposed for solving time-
dependent problems for parabolic equations. Taking into account the
stiffness of a problem, it is based on finding the approximate solution at
the new time level using the unconditionally stable implicit approxima-
tions in time. To select the time step, auxiliary problems are solved by
means of the explicit formulas.

2. To evaluate the time step, we compare the solution at the current time
level tn and the approximate solution, obtained by the successive solution
of two subproblems over the intervals [tn, tn+1] and [tn+1, tn], respectively,
using explicit formulas. For the parabolic problems under consideration,
the explicit a priori formula is derived for the time step.

3. A similar formula for the time step is obtained by comparing the ap-
proximate solutions using explicit formulas when solving the auxiliary
problem over the time interval [tn, tn+1] and the auxiliary problem over
two intervals [tn, tn+1/2] and [tn+1/2, tn+1].

4. The robustness of this strategy for selecting the time step is shown for a
model parabolic problem. Numerical results demonstrate efficient adap-
tation to the singular behaviour of the solution at the initial time stage as
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well as to discontinuities in the problem coefficients and in the right-hand
side.
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