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Abstract. In this paper, the numerical algorithms for solution of pore volume and
surface diffusion model of adsorption systems are constructed and investigated. The
approximation of PDEs is done by using the finite volume method for space derivatives
and ODE15s solvers for numerical integration in time. The analysis of adaptive in
time integration algorithms is presented. The main aim of this work is to analyze the
sensitivity of the solution with respect to the main parameters of the mathematical
model. Such a control analysis is done for a linearized and normalized mathematical
model. The obtained results are compared with simulations done for a full nonlinear
mathematical model.
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1 Introduction

It is well-known that during recent years the environmental pollution ques-
tions become a very important issue. The strict environmental requirements
encourage to reduce environmental pollution during the industrial processes.
The manufacturers look for technologies enabling with low-costs to effectively
remove harmful substances. They apply different methods or chemicals.

Adsorption is one of the methods widely used for the removal of pollutants
from water. Adsorption is considered as a better and economical alternative

�
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to other conventional methods (e.g. reverse osmosis, coagulation, floccula-
tion, flotation, chemical precipitation etc), because of removal of potentially
toxic elements (PTEs) at low concentrations (less than 100 mg/l), flexibility
in design and operation. In general adsorption is one of the main surface phe-
nomena. During the interaction of two different phases (fluid and solid) the
higher concentration at the solid surface implies adsorption process and the
change in concentration in the interfacial layer is obtained. During the adsorp-
tion process we consider two main components, i.e., adsorbent and adsorbate.
Adsorbent is a solid on which the adsorption process occurs. Usually it is a very
porous material which contains the high specific surface area. Different types
of adsorbents (depending on the adsorbate) are used: natural adsorbents (e.g.,
biochar, clay minerals or clay based adsorbents, fly ash, wood) or engineered
adsorbents (e.g., silica gels, activated carbons). Adsorbate is the material which
is adsorbed (mainly organic or non-organic pollutants, such as industrial efflu-
ents, oils or heavy metals). Depending on the adsorbate various adsorbents
may be used: for example, for air cleaning at home the activated carbon filters
are used, for removing moisture silica gel granules are used.

Various aspects of the adsorption process are analyzed and discussed [12,17].
Different adsorption models are reported, analyzed and applied to the exper-
imental data with different adsorbents [7, 8, 10, 13]. Some of the models are
based on adsorption reaction models and the adsorption kinetics is represented
as the rate of chemical reactions. Other authors investigate the influence of
the model parameters (mass transfer coefficient, surface diffusion or pore dif-
fusivity) [9, 11]. Less works are dedicated to the direct numerical simulation
of reactive flow when the scientists should choose the appropriate solute trans-
port model [7]. In general case, mathematical models can be classified as given
in [13]: (i) adsorption reaction models; (ii) adsorption diffusion models; and
(iii) pore volume and surface diffusion models. The models with mass trans-
fer diffusion are more complicated, but these models are most realistic. Some
authors analyzed and compared the adsorption results obtained using differ-
ent diffusion models [11, 16]. We note, that in this case the system of partial
differential equations (PDEs) with appropriate boundary conditions is nonlin-
ear and quite complicated. Thus numerical methods are used for solving such
problems. For approximation of the system of PDEs different numerical meth-
ods are applied. In [8] the conservative averaging method was used. In [7], the
finite volume method is applied to approximate the system of PDE. For solving
adsorption problems a various computational software was used. For example
in [7] calculations were performed by combining the special commercial soft-
ware package (GeoDict) and a general non-commercial software (Pore-Chem).
The results of [8, 13] were obtained by using MATLAB software. In [11] the
program PDESOL was applied.

In this paper we consider the complex pore volume and surface diffusion
model, presented also in [11, 13, 16]. This model includes bulk liquid phase
mass balance and the mass balance equation for both solid and liquid phases
of the particle. We consider the special methods for appropriate numerical
approximation of the model for adsorption kinetics, analyze the stability of the
obtained discrete problem and investigate the sensitivity of the solution with
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respect of main transport and kinetic parameters. On the basis of this anal-
ysis it is shown how the adsorption process can be controlled efficiently. The
obtained results make a basis for solving some important applied optimization
problems– to maximize the amount of adsorbate by selecting the optimal shape
parameter of the adsorbent.

The paper is organized as follows. In Section 2 we describe the mathemat-
ical adsorption model for the liquid-solid system. The approximation of the
obtained system of nonlinear PDEs is done in Section 3. The application of
standard adaptive ODE solvers and the analysis of different methods to con-
struct adaptive in time discrete meshes are done in Section 4. The analysis of
adaptive integrators for ODEs simulating parabolic problems is done in Sec-
tion 5. The main goal is to control the global error of the discrete solution in
the maximum norm, i.e. not restricting to the final time of the simulation. In
Section 6 a more detailed analysis of ODE solvers is presented for the ODE
system describing the surface kinetics. In order to understand and to control
effectively the adsorption process we propose and analyze the linearized ad-
sorption kinetics model. Using this model we can predict the dynamics of the
adsorption process. The results are presented in Section 7. It shown that us-
ing such simplification we can model the adsorption process quite accurately.
Results of numerical experiments (for the full and linearized models) are pre-
sented and discussed in Section 7. It is shown that using the proposed simplified
linear models we can predict the main trend of the adsorption process quite
accurately.

2 The mathematical model of the liquid-solid adsorption
kinetics

In this section we present the liquid-solid adsorption kinetics model also used
in [11, 13, 16]. It is important to note that we consider all main physical pro-
cesses, including kinetics and the pore volume and surface diffusion. The fol-
lowing assumptions are used [13]: the system is isothermal, all particles are
spherical and of the same size, there exists adsorption equilibrium between the
pore and the average porosity and tortuosity of the particle. The model takes
into account three concentrations: the bulk liquid concentration (CB), the con-
centration of the solute in the liquid (CL) and the concentration in the solid
(CS). In the particle we consider two processes: the solute diffusion from the
particle surface to the center of the particle and the adsorption equilibrium
in the particle represented by an isotherm. The surface diffusion occurs due
interactions between the solute and the solid.

On the surface of the particle the solute flux from the bulk to the liquid
phase is proportional to the difference between the bulk concentration and the
concentration of the liquid solute on the surface of the particle. This process
is described by (2.1) equation:

∂CB(t)

∂t
= −kmA

(
CB(t)− CL(t, r)

∣∣
r=Rp

)
, (2.1)

here km is the external mass transfer coefficient, A = mS
V , m is the mass of
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adsorbent, S is the external surface area per mass of adsorbent, V is the volume
of solution, Rp is the particle radius.

Next we describe the mass balance in the particle. The combined transport
in two phases is considered. According to the Fick low the overall transport
flux is a sum of void and adsorbate phase transport fluxes [14]

J = εJP + (1− ε)JS ,

where JP = −DP
∂CL

∂r is the diffusion flux from the particle surface to the center

of the pores and JS = −D0
S
∂CS

∂r defines the diffusion flux on the solid surface.
Assuming the local equilibrium for chemical potential between the adsorbed
phase (solid) and not adsorbed phase (liquid) JS can be written as [14]:

JS = −LCS
∂µS
∂r

, µS = µL = µ0 +RT ln(CL),

where R is the ideal gas constant, L is the mobility constant and T is temper-
ature. Then the flux can be expressed as

JS = −DS
CS
CL

∂CL
∂CS

∂CS
∂r

,

where DS = RLT . As a result we get the overall mass balance equation

ε
∂CL(t, r)

∂t
+ (1− ε)∂CS(t, r)

∂t
(2.2)

=
1

r2

∂

∂r

(
εDP r

2 ∂CL(t, r)

∂r
+ (1− ε)DSr

2CS(t, r)

CL(t, r)

∂CL(t, r)

∂r

)
,

where ε is the particle porosity, r is the particle radial direction, DP is the
pore diffusivity and DS is the surface diffusivity. As it is shown in [7,13,14] the
surface diffusion depends on the used isotherm for the equilibrium conditions.
As an example, let us consider the Langmuir isotherm

CS(t, r) = CS,∗b
CL(t, r)

1 + bCL(t, r)
, (2.3)

where b is a Langmuir adsorption constant and CS,∗ is the saturation solute
solid concentration. Then equation (2.4) represents the overall mass balance
in the particle: through the liquid phase concentration(

ε+ (1− ε)∂CS
∂CL

)∂CL(t, r)

∂t
(2.4)

=
1

r2

∂

∂r

(
r2
(
εDP + (1− ε)DS

CS,∗b

1 + bCL(t, r)

)∂CL(t, r)

∂r

)
.

This system of ODE (2.1) and PDE (2.2) is supplemented with initial and
boundary conditions:

CB(0) = C0
B , CL(0, r) = C0

L, 0 ≤ r ≤ Rp, (2.5)
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r2 ∂CL(t, r)

∂r

∣∣∣
r=0

= 0, r2 ∂CS(t, r)

∂r

∣∣∣
r=0

= 0, (2.6)(
εDP + (1− ε)DS

CS(t, r)

CL(t, r)

)∂CL(t, r)

∂r

∣∣∣
r=Rp

= km
(
CB(t)− CL(t, r)

∣∣
r=Rp

)
, (2.7)

where km is the mass transfer coefficient.
The initial conditions (2.5) represent the bulk concentration and solute con-

centration in the liquid phase inside the particle at the initial time moment.
Equations (2.6) define the symmetry conditions for CS and CL concentrations
at the center of the particle. As the boundary condition for r = Rp the conti-
nuity condition (2.7) on the surface of the particle is used. In the case of the
Langmuir isotherm (2.3) this boundary condition is defined as:(

εDP + (1− ε)DS
CS,∗b

1 + bCL(t, r)

)∂CL(t, r)

∂r

∣∣∣
r=Rp

= km
(
CB(t)− CL(t, r)

∣∣
r=Rp

)
. (2.8)

In [7] it is shown that the choice of correct isotherm is a very important part
of the model selection. The adsorption isotherm represents the relationship
between the adsorbate concentration in the solid and in the liquid. The ad-
sorption equilibrium conditions imply the dynamics of the full process. The
required isotherms should be chosen by taking into account properties of the
solute, the order of the reaction and the interface type [7].

A number of different isotherms are described in literature. The most fre-
quently used isotherms are [2, 7, 14]: a) the Henry isotherm CS = KCL,
b) the Langmuir isotherm CS = CS,∗bCL/(1 + bCL), c) the Freundlich isotherm

CS = KFC
1/n
L , d) the Redlich–Peterson CS = kRPCL/(1 + aRPC

β
L), e) the

Sips isotherm CS = CS,∗(bCL)1/n/(1 + (bCL)1/n).

3 Approximation of the model

The approximation of the mathematical model (2.1)–(2.7) is done by using the
method of lines. First, the semi-discrete finite volume scheme is constructed to
approximate in space the nonlinear PDE (2.2). In order to simplify notations
we restrict to the Langmuir adsorption model (2.3).

The uniform spatial mesh ω̄h = ω ∪ {rJ} is defined as

ωh = {rj : rj = (j − 1/2)h, j = 1, . . . , J − 1}, rJ = Rp, h = Rp/(J − 0.5).

Multiplying equation (2.3) by r2, integrating it over finite volume [rj−0.5, rj+0.5]
and approximating the obtained fluxes by central difference formula we obtain
the semi-discrete scheme for j = 1, ..., J − 1

r3
j+1/2 − r

3
j−1/2

3

(
ε+ (1− ε) bCS,∗

(1 + bCL,j)2

)
∂CL,j(t)

∂t
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= r2
j+1/2

(
εDP + (1− ε)DS

bCS,∗
1 + 0.5b(CL,j+1 + CL,j)

)
CL,j+1 − CL,j

h

− r2
j−1/2

(
εDP + (1− ε)DS

bCS,∗
1 + 0.5b(CL,j + CL,j−1)

)
CL,j − CL,j−1

h
.

Boundary conditions are approximated in a similar way. For example, the
condition (2.8) is approximated by the semi-discrete equation (3.1)

h

2
r2
J

(
ε+ (1− ε) bCS,∗

(1 + bCL,J)2

)
∂CL,J(t)

∂t
= −r2

J−1/2

(
εDp + (1− ε)DS

× bCS,∗
1 + 0.5b(CL,J + CL,J−1)

)CL,J − CL,J−1

h
+ r2

Jkm(CB(t)− CL,J). (3.1)

The proposed finite volume scheme approximates the given nonlinear differen-
tial problem with the second order accuracy. Due to properties of nonlinear
coefficients it is straightforward to show that for implicit approximations of the
time derivatives the fully discrete scheme is also unconditionally stable and the
discrete solution converges to the exact solution of the differential problem. In
this case the known theoretical results [4, 6] can be applied to prove that the
solution of the semi- discrete scheme converges in the L∞ norm with the order
equal to the accuracy of approximation.

By adding the mass balance equation for the bulk concentration CB

∂CB(t)

∂t
= −kmA(CB(t)− CL,J(t))

we obtain a large system of nonlinear ODEs with respect to functions CL,j(t),
j = 1, . . . , J and CB(t).

For some sets of coefficients this system of ODEs defines a very stiff problem,
thus appropriate solvers should be used to solve it. In our computational
experiments we use the MATLAB ode15s solver. The analysis of some general
adaptive solvers for stiff ODEs is presented in the next section.

4 Adaptive ODE solvers

It is well-known that two main challenges should be solved when stiff ODE
systems are integrated. First, the unconditional stability of the numerical al-
gorithm should be guaranteed. Second, the scheme should have the ability to
produce time grids on which the main features of the solution are sufficiently
resolved [1].

We start our analysis with a simple model ODE problem

du

dt
= λu, u(0) = u0, t ∈ [0, T ], λ > 0. (4.1)

It describes the case of a linear source function and the solution is defined as

u(t) = u0e
λt. (4.2)

Math. Model. Anal., 24(4):598–616, 2019.
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We note, that for problems when the eigenvalues of the discrete operator
have positive real parts and the problem is non-stiff, explicit integration algo-
rithms can be used (e.g. the forward Euler scheme). But for stiff problems the
unconditional stability requirement leads to application of implicit solvers. As
the first example of discrete integrator we consider the implicit backward Euler
scheme and approximate the problem (4.1) as:

Un − Un−1

τn
= λUn, n = 1, . . . , N, (4.3)

where the nonuniform time mesh is defined as tn = tn−1 + τn, t0 = 0. Here Un

is the discrete solution which approximates the exact solution u(tn).
The local truncation error at t = tn is defined by

ψn =
u(tn)− u(tn−1)

τn
− λu(tn).

It can be bounded like
|ψn| 6 τn

2
|u′′(tn)|. (4.4)

Next we consider the error Zn = Un − u(tn). Substituting Un = Zn + u(tn)
into (4.3) we obtain the same discrete equation as (4.3) but with the right-hand
side ψn:

Zn − Zn−1

τn
= λZn − ψn.

Then we have that

Zn =
1

1− τnλ
(Zn−1 − τnψn)

from which the standard stability estimate follows

|Zn| 6 ρn(|Zn−1|+ τn|ψn|), ρn =
1

|1− τnλ|
. (4.5)

Application of (4.5) recursively and the initial condition Z0 = 0 yields the a
priori error estimate

|Zn| 6
n∑
k=1

(

n∏
l=k

ρl)|ψk|τk. (4.6)

If the explicit Euler method is used to integrate the problem (4.1)

Un − Un−1

τn
= λUn−1, tn = tn−1 + τn, t0 = 0, (4.7)

then the same error estimate (4.6) is valid, only the stability factor ρn is defined
as

ρn = 1 + τλn.

Different step-size control algorithms can be derived from (4.6). Assuming
the step size τn to be sufficiently small, the stability factor ρn can be estimated
as ρn ≈ eλτn . Then we get that

n∏
l=k

ρl = eλ(tn−tk−1).
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It follows from the estimate of the truncation error (4.4), the explicit form of
the exact solution (4.2) and the stability inequality (4.6), that the first step-size
control can be based on the global (uniform) a priori error estimate

|Zn| 6 0.5λ2u0

n∑
k=1

(

n∏
l=k

ρl)e
λtk(τk)2 6 0.5λ2u0tne

λtn max
16k6n

|τk|.

Lemma 1. In order to guarantee the estimate |Zn| 6 ε it is sufficient to use
the uniform time mesh with the time-step size:

τk = 2ε/(λ2u0tne
λtn), k = 1, . . . , n.

It is clear, that such a uniform mesh is sufficient to solve the given problem
with the required accuracy. A more challenging task is to find the optimal
distribution of mesh points. Different objective functions can be considered.

Lemma 2. The time mesh obtained by minimizing the global error Zn for a
given number of grid points is uniform with time step sizes

( n∏
l=k

ρl

)
|ψk|τk = c, k = 1, . . . , n. (4.8)

Here |ψk|τk defines the local error accumulated on the element [tk−1, tk] and
wk =

∏n
l=k ρl are the weights.

The proof follows directly from results of [1, 5]. A standard and more general
way to compute the weights is to solve a dual problem to the given discrete
problem.

It is interesting to note, that for the given test problem the optimal mesh
is uniform. The same conclusion is valid also in the case of parabolic type
problems, when λ < 0. This conclusion is quite counter-intuitive, since it is
natural to expect that for an adaptive time mesh smaller step-sizes should be
taken to resolve faster changes of the solution.

The popular MATLAB solver ode15s, which is targeted to solve stiff ODEs,
applies hp-adaptivity, i.e. the algorithm selects the approximation order and
adaptive time step size. The numerical integrators are defined by the backward
difference formula (BDF) or by the numerical differentiation formula (NDF) [3].
For the adaptive step size control the approximate local truncation error

LTE = Cτk+1
n ‖Uk+1(tn)‖ (4.9)

is used. Here k is the order of the selected BDF or NDF algorithm. It follows
from the analysis given above that this monitoring function is similar to the
optimal step size control estimate (4.8), only the weights wk are simplified and
some a priori constant C is used.

Math. Model. Anal., 24(4):598–616, 2019.
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5 A control of the error in the maximum norm

In the previous section we derived the optimal time grid when the error is
controlled only at the final time moment. This objective function is well fitted
if the solution is a growing function and the error at the final time moment is
reaching the maximal value. Now we consider the model problem

du

dt
+ λu = 0, u(0) = u0, t ∈ [0, T ], λ > 0. (5.1)

It simulates the simplified diffusion equation and the solution is defined as

u(t) = u0e
−λt.

Again we solve the model problem by using the backward Euler method

Un − Un−1

τn
+ λUn = 0, tn = tn−1 + τn, t0 = 0. (5.2)

The error at the time moment t = tn satisfies the equation

Zn =
1

1 + τnλ
(Zn−1 − τnψn). (5.3)

Repeating the analysis of the previous section we get the estimate

|Zn| 6
n−1∑
k=0

τρk+1|ψn−k| 6 τ

2
λ2tne−λtnu0, (5.4)

where the stability factor is defined as ρn = 1/(1 + τnλ). It follows from (5.4)
that the error bound has the maximum value at tm = 1/λ and thus we can
rewrite the error estimate in the form

|Zn| 6 τ

2
λe−1u0, n = 1, . . . ,m.

Now let us solve this problem with accuracy ε in the interval [0, T ]. It
follows from the analysis of equation (4.1) that for the backward Euler scheme
in the time interval [0, 1/λ] the optimal time mesh is uniform with the time
step size

τ0 6 2eε/(λu0).

Now we make the important conclusion from the stability estimate (5.3). In
order to guarantee the same accuracy of the discrete solution for all t ∈ [1/λ, T ],
it is possible to increase dynamically the sizes of time steps and to reduce the
total computation complexity of the integration algorithm. According to (5.3)
the time step size τn can be computed from the equality

ε =
1

1 + τnλ
(ε+ τn|ψn|).

Taking into account that ψn = 0.5τnλ
2u0 exp(−λtn−1), for tn = tn−1 + τn,

tn > tm and exp(−λtm) = 1/e, we define the time step size of the adaptive
mesh:

τn =
2εeλtn−1

λu0
= τ0e

λ(tn−1−tm).

Thus we have proved the following result.
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Lemma 3. For the parabolic model problem (5.1) the error of the discrete so-
lution of the backward Euler scheme (5.2) is uniformly less than the specified
accuracy constant ε if the following adaptive mesh is used

τn = 2eε/(λu0), for tn 6 t
m,

τn = τ0e
λ(tn−1−tm), for tm < tn 6 T.

The proposed dynamics of the adaptive time step sizes is qualitatively sim-
ilar to adaptive grids generated by using MATLAB type error monitors (4.9).
Still for the latter solver the time step sizes are changing in a more moderate
way

τn = τ̃0e0.5λtn−1 .

We will mention one interesting relation between forward and backward
Euler schemes. It is easy to see, that the explicit forward Euler scheme (4.7) can
be considered as the implicit backward Euler scheme, only moving backward
in t:

Un−1 − Un

τn
+ λUn−1 = 0, tn−1 = tn − τn, tN = T.

Thus the solutions Un of the explicit forward Euler scheme (4.7) are poor
approximations of the growing exact solution of the problem (4.1), however
they are good approximations to the solution of the problem

dũ

dt
= λũ, ũ(T ) = UN , t ∈ [0, T ], λ > 0.

Thus the solution Un shadows a solution of the same differential problem but
with a different (“wrong”) initial condition. The shadowing phenomena is well-
explained in the expository paper [15], see also references given therein.

6 Integration of the surface kinetics equations

In this section we analyze the system of differential equations
du

dt
= α(v − u), u(0) = 1,

dv

dt
+ γv = β(u− v), v(0) = 0.

(6.1)

The given test problem describes a simplified model for surface adsorption ki-
netics. The linear sink term γv simulates the diffusion processes. If coefficients
α, β � 1 are large and γ = 0 (no diffusion), then the solution fastly reaches
the stationary value

u∗ = v∗ = β/(α+ β).

If γ > 0, the the adsorption kinetics is described by two stages: first a quasi-
stationary solution is fastly reached and then both components decay slowly
due to the linear sink term.

Next we present some results of computational experiments. The following
values of parameters are used: α = 10, 100, β = 2α, γ = 0, 1 and the time

Math. Model. Anal., 24(4):598–616, 2019.
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a) b)

Figure 1. Solutions of the initial value problem (6.1): a) γ = 0, b) γ = 1.

interval [0, 4]. In Figure 1 the solutions of problem (6.1) are shown for different
values of γ.

Figure 2 represents the sizes of time steps selected by ODE15s solver when
the approximation order was reduced to one (the backward Euler method).
The system is solved in the time interval [0, 4] with different values of the
parameters α, β and γ.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

τ

 

 

α=10, β=20, γ=0

α=100, β=200, γ=0

α=10, β=20, γ=1

α=100, β=200, γ=1

Figure 2. Time steps in time interval [0, 4] with different values of the parameters.

We see that in the case γ = 0 the solution reaches the equilibrium state
very fast (depending on the values of α and β) and the integration step size
also fastly increases till the maximal allowed step. But in the case of γ = 1
due to the slow sink process the time step is adapted to resolve the dynamics
of the solution and it increases not so fast as in the case of γ = 0.
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7 The sensitivity analysis of the simplified adsorption
kinetics model

In this section we introduce the simplified adsorption kinetics model with initial
and boundary conditions:

∂CB(t̄)

∂t̄
= −α(CB(t̄)− CL(t̄, 1)), 0 < t < T̄ , (7.1)

∂CL(t̄, r̄)

∂t̄
=

1

r̄2

∂

∂r̄

(
r̄2 ∂CL(t̄, r̄)

∂r̄

)
, 0 < r̄ < 1, (7.2)

r̄2 ∂CL(t̄, r̄)

∂r̄

∣∣∣
r̄=0

= 0,
∂CL(t̄, r̄)

∂r̄

∣∣∣
r̄=1

= β(CB(t̄)− CL(t̄, 1)), (7.3)

CB(0) = C0
B , CL(0, r̄) = C0

L, 0 6 r̄ 6 1. (7.4)

These equations are obtained from (2.1), (2.2), (2.5)–(2.7) using dimension-
less variables

r = Rpr̄, t =
cR2

p

D
t̄, 0 < r̄ < 1, 0 < t̄ < T̄ =

TD

cR2
p

and linearizing nonlinear equation on the equilibrium isotherm

CS(t̄, r̄) = f(CL(t̄, r̄))

with c = ε+ (1− ε)f ′(CL). The combined diffusion coefficient is selected as

D = εDp + (1− ε)Ds
f(CL)

CL
.

New mass transport parameters α and β are computed as:

α =
AkmcR

2
p

D
, β =

kmRp
D

. (7.5)

We use the linearized and normalized mathematical model (7.1)–(7.4) for the
sensitivity analysis with respect to the parameters of adsorption system.

We test the simplified model on the data reported by V. Russo et al. [13]
and P. R. Souza et al. [16]. In [13] the Langmuir isotherm for the equilibrium
was used. For the set of parameters reported in [13] we solve the full adsorption
kinetics model first. In Figure 3 we see the change of the bulk concentration
(CB(t)) and the change of the concentration of the solute in the liquid on the
surface of the particle (CL(t, Rp)) and at the center of the particle (CL(t, 0))
along the time. We see that the bulk concentration reaches the saturation
very fast. This is determined by the boundary condition: the change in the
bulk concentration causes the change of the concentration of the solute in the
liquid phase on the surface of the particle. But still we have a slow transport
(diffusion) process inside of the particle. Therefore the concentration of the
solute in the liquid at the center of the particle changes very slowly along the
time.

Math. Model. Anal., 24(4):598–616, 2019.
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Figure 3. Bulk concentration, concentration of the solute in the liquid on the surface of
the particle and concentration of the solute in the liquid at the center of the particle for the

data reported in [13].

The second example illustrates an opposite situation when the concentration
of the solute in the liquid at the center of the particle changes much faster and it
reaches equilibrium state only shortly after surface concentration (Figure 4). In
this case we use the data reported in [16] with the Redlich-Peterson isotherm.
Some model parameters are estimated or converted using the provided data
in order to compare the change of the concentrations for the two analyzed
problems.
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Figure 4. Bulk concentration, concentration of the solute in the liquid on the surface of
the particle and concentration of the solute in the liquid at the center of the particle for the

data reported in [16].

We find that these two examples illustrate different properties of the ad-
sorption process. In the presented figures we observe qualitatively different
results. We remind that the full mathematical model is used in the analysis
given above.

Next we use the linearized and normalized mathematical model to the dis-
cussed problems and concentrate on the dynamics of the bulk concentration



Mathematical Analysis of Liquid-Solid Adsorption Model 611

(CB(t̄)), concentration of the solute in the liquid on the surface of the particle
(CL(t̄, 1)) and concentration of the solute in the liquid at the center of the
particle (CL(t̄, 0)). The Figures 5 and 6 show that with the simplified model
we can predict the dynamics of the process quite accurately.
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Figure 5. Dynamics of the concentrations obtained from the simplified model for the
data reported in [13].
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Figure 6. Dynamics of the concentrations obtained from the simplified model for the
data reported in [16].

Now we focus on the sensitivity analysis. In order to investigate the influ-
ence of physical parameters on solutions, we performed a detailed analysis of
the second example based on data provided in [16]. With this set of parameters
we find that the simplified model parameters are α = 4.14 and β = 0.4. We see
that the parameter α controls the decay of the bulk concentration. The higher
is the value of this parameter the faster bulk concentration CB(t̄) decreases and
the process reaches the equilibrium with the lower concentration (see Figure 7).
The concentration on the surface of the particle CL(t̄, 1) does not increases so
fast.

The parameter β affects the change in concentration on the surface of the

Math. Model. Anal., 24(4):598–616, 2019.
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Figure 7. Dynamics of the concentrations obtained from the simplified model (α = 41.4,
β = 0.4) for the data reported in [16].

particle: the higher the value of this parameter the faster concentration CL(t̄, 1)
increases (Figure 8).
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Figure 8. Dynamics of the concentrations obtained from the simplified model (α = 4.14,
β = 4) for the data reported in [16].

As it was shown in Section 6 the adsorption kinetics depends not only
on the absolute values of parameters, but also on their ratio. We see the
influence of the ratio α/β in Figure 8 (α/β ≈ 1), Figure 9 (α/β ≈ 10) and
Figure 10 (α/β ≈ 0.1). We conclude that the ratio of parameters influences
the equilibrium concentration and the time required to reach this concentration.
If α/β is large then the system fast reaches equilibrium with lower the bulk
concentration. In the case when α/β � 1 the system reaches equilibrium with
high bulk concentration and needs more time.

Now we analyze which physical parameters influence such changes. From
the (7.5) we find that α/β = AcRp. This means that the adsorption process
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depends on the properties of the adsorbent and solution, on the isotherm used
for equilibrium and the radius of the particle. In Figure 11 we present the
concentrations obtained using Langmuir isotherm estimated from the data re-
ported in [16]. The results show that in our case when isotherms fit quite well
to the given data we can observe the same adsorption process development (see
Figure 6 for comparison).
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Figure 9. Dynamics of the concentrations obtained from the simplified model (α/β ≈ 10)
for the data reported in [16].
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Figure 10. Dynamics of the concentrations obtained from the simplified model
(α/β ≈ 0.1) for the data reported in [16].

After performed simulations we see that the linearized and normalized
mathematical model works well and we can predict the dynamics of the process
with a different set of physical parameters quite accurately. As we see from
calculations with a full adsorption model the bulk concentration decreases for
both examples (see Figure 3 and Figure 4), but for the first example the process
is faster. Let us compare the results obtained using the full and the simplified
models for the data reported in [13]. In this case the full model (see Figure 3)
shows that the bulk concentration decreases very fast and the pore concentra-
tion of the solute in the liquid increases till a saturation is reached. During a

Math. Model. Anal., 24(4):598–616, 2019.
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Figure 11. Dynamics of the concentrations obtained from the simplified model with
Langmuir isotherm for the data reported in [16].

short time interval (depending on the physical parameters) the concentration of
solute in the liquid at the surface of the particle increases very fast and a quasi-
stationary solution is fastly reached. Then both solutions decay together. The
change of the concentration on the surface of the particle implies the change
of the concentration in the pore. This process is very slow for this example.
And the pore is fully filled only after a long time interval. As we can see the
saturation at the center of the particle even after 100 000 s is still not reached.

Analogous information is obtained from the simplified model (see Figure 5).
Using this model we find that the concentration of solute in the liquid at the
surface of the particle increases very fast and reaches the value of bulk concen-
tration. The change in the concentration inside the particle is a slow process
and needs time to reach the center of the particle. We should note that the
quasistationary concentration and the rate of adsorption process differ from the
full model solutions. Such differences can be explained by the influence of the
parameters c and D used in simplified model. The values of these parameters
do not change according to time in the simplified model and such simplification
implies the quantitative changes in solutions. But we model the main trend of
the adsorption process quite accurately.

8 Conclusions

The pore volume and the surface diffusion model for the liquid-solid adsorption
is considered. The numerical methods for the adsorption kinetics model are
constructed, the stability analysis for the discrete problem and the global error
control are discussed.

The sensitivity of the solution with respect of main physical system param-
eters is analyzed using the simplified model. This analysis allows to predict the
dynamics of the adsorption process. The results obtained with the linearized
and normalized mathematical model are compared with the simulations done
for a full nonlinear mathematical model. The results of the numerical experi-
ments show that we can predict the main trend of the adsorption process using
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the proposed simplified linear model.
The obtained results can be applied for optimization problems.
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