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ABSTRACT

The method of matched asymptotic expansions is used in the present paper to derive an
approximate solution for transient flow of a viscous incompressible fluid in an annulus. The
transient is caused by a sudden reduction of flow rate to zero. The laminar flow before
deceleration can be either steady or unsteady but unidirectional. The solution is valid for
short time intervals after sudden deceleration.
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1. INTRODUCTION

Unsteady flows of a viscous incompressible fluid are important in many en-
gineering problems. A sudden change of the flow rate can occur in some
hydraulic problems (waterhammer) or in the flow of blood in the aorta. As a
result, the velocity and pressure distribution change considerably during short
time interval and can cause a severe damage to pipelines and other hydraulic
devices.

There are not too many known analytical solutions for unsteady viscous
flow in pipes and channels. Historically the first one was the problem solved
by Gromeka [3]. He considered an impulsive start of the flow in a circular
cylinder due to instantaneous constant pressure gradient. A laminar decay
of a fully developed flow in pipes and channels after a sudden reduction of
the flow rate to zero is studied by Weinbaum and Parker [7]. Their solution
is found by means of the Pohlhausen method used in boundary layer theory.
Das and Arakeri [1] obtained some analytical solutions for unsteady laminar
flows in pipes and channels for the case where the motion is generated by a
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piston. The solutions in [1] correspond to the case where the velocity of the
piston is either constant over some time interval or varies linearly with time.

The solutions in [1; 3] are expressed in terms of infinite series and can be
used in practice only if the parameter 8 = vt*/R3 is not too small, where v is
the viscosity of the fluid, ¢* is time and Ry is the radius of the pipe. However,
there are cases where the parameter 8 can be very small. For example, in
waterhammer analysis the time scale is of order a few seconds, therefore
can be in the range 107® to 10*. The infinite series in [1; 3] are practically
useless in such a case since too many terms in the series should be taken into
account in order to obtain the velocity distribution.

For small values of 8 the method of matched asymptotic expansions can
give relatively simple approximate solutions which can be successfully used
in practice. Examples of such solutions for the case of a plane channel and a
pipe are given in [2; 6]. It is also shown in [2] that for short time intervals the
approximate solution for unsteady flow in a pipe after a sudden blockage agrees
very well with exact analytical solution. Asymptotic solution for unsteady
viscous flow in an annulus after a sudden reduction of the flow rate to zero is
obtained in the present paper. The solution is found by matching the solutions
in the core and two boundary layers near the walls of the annulus.

2. ASYMPTOTIC SOLUTION

Consider an infinitely long annulus of the inner and outer radii R; and Ra,
respectively, filled with a viscous incompressible fluid. At time ¢, = 0 the flow
is instantaneously decelerated so that the total fluid flux through the cross
section of the annulus is zero. We introduce a system of cylindrical polar
coordinates (74,0, z,) with the origin at the common axis of the cylinders. It
is assumed that the flow before and after deceleration is unidirectional, that
is, the velocity vector has only one nonzero (longitudinal) component which
is a function of r, and t. only. The results of Weinbaum and Parker [7] show
that this is true at a distance of order channel width (in the case of a plane
channel) from the point where the flow is blocked. In this case the system of
Navier-Stokes equations reduces to the following equation

Ous 1 Op. (62u* 1 Bu*)
=—= 4y — .

Ot,  pOz, ar2 " r, Or, (2.1)

The following dimensionless variables are used in sequel: r = r./Ra, t = t./T,
u = uy /U, and p = p.T/(pUsR2), where T is some characteristic time and
U, is some characteristic velocity. Then the dimensionless form of equation
(2.1) is

ou 0%y 1 6u>

a —gO(t)-i-E(W'F;E (2.2)
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T
where we used the notations ¢ = % and ¢(t) = —%. It follows from

2
equation (2.1) that if u, is a function of r, and ¢, only then the pressure

gradient with respect to z, is a function of time only. The parameter ¢ is the
ratio of the wave time scale, T', and the diffusion time scale, R /v. In some
applications the value of ¢ can be very small. For example, in waterhammer
experiments of Holomboe and Roleau [4] the value of ¢ = 0.0066 for the
laminar case. The boundary conditions are

u|r=R = 0; u|r=1 = 07 (23)

where R = R; /Ry is the radius ratio of the cylinders. The initial condition is
given by
u|t=0 = g(T), (24)

where g(r) is the function which represents the velocity distribution before
deceleration. The non-slip boundary conditions on the wallsr =1 and r = R
are assumed to be satisfied for g(r), that is, g(1) = 0 and g(R) = 0 so
that the boundary conditions (2.3) and initial conditions (2.4) are consistent.
Note that the flow before deceleration can be either steady or unsteady, but
unidirectional.

Finally, the total fluid flux through the cross section of the annulus is zero
for all £ > 0, that is,

2 1
- R

Condition (2.5) is an idealized condition and corresponds to the case of in-
stantaneous closure of the annulus. In more realistic cases the reduction of
fluid flux to zero occurs during short but finite time interval. Applying the
Laplace transform to (2.2)—(2.5) we obtain

_ _ d*ua  ldu
su—g(r)—(p—}-&(w—i-;%), (2.6)
a'r:R = 0; 17/|7'=1 = 07 (27)
9 1
W/ U dT = 0, (28)
- R

where s is the parameter of the Laplace transform, @ and ¢ are the Laplace
transforms of the functions u and ¢, respectively.

The method of matched asymptotic expansions is used in the present paper
to construct asymptotic solution for (2.6)—(2.8) valid for short times.

The outer expansions for the functions 4(r, s) and @(s) are sought in the
form

u(r,s,e) = o(r,s) +eui(r,s) +eua(r,s) +... (2.9)
@(s,e) = @o(s) +Vepi(s) +e@a(s) +... (2.10)



266 A.A. Kolyshkin, I. Volodko

Substituting (2.9), (2.10) into (2.6), (2.8) and collecting the terms that do not
contain €, we obtain

stio — g(r) = Po, (2.11)
2 1
1——_R2/}; TUg dr = 0. (212)

Solving (2.11) and (2.12) yields

(Z)O = —G7 /U/O = 97(7')8_ G, (213)

where G is the average velocity of the flow before deceleration:

2 1
G= W/R rg(r)dr.

The inner expansion near the wall r = R is sought in the form
a(r, s,e) = Uo(€&,8) + VeUr (&, 8) + eUs(&,8) + ..., (2.14)
where £ is the boundary layer variable defined by

r—R
é.: ﬁ .

Substituting (2.14) into (2.6), (2.7) and collecting the terms that do not con-
tain €, we obtain

22U, -

d—£2 - SU() = G7 (215)
and

Up(€ =0,s) =0. (2.16)

The function Up(§,t) describes the development of the boundary layer near
the wall to order unity. Since diffusion was absent at ¢ = 0, in order to derive
(2.15) zero initial condition for Uy is used. General solution of equation (2.15)
has the form

Uo(&;8) = CreV?€ + Cre V3¢ — g;

where C; and Cy are arbitrary constants. Using the matching condition

lim [70 = lim Ug
£—o00 r—R
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we obtain that C; = 0. The value of the constant Cy can be found from
(2.16). Thus the boundary correction near the wall 7 = R to order unity is

Uoe,s) = S(evre 1)

S

The inner expansion near the wall » = 1 is sought in the form

a(r,s,e) = Vo(n,s) + VeVi(n, s) + eVa(n,s) + ...,

where 7 is the boundary layer variable defined by

1—r
"=
The function Vj satisfies the following equation
‘i;:/o —sV =G, (2.17)
and the boundary condition
Vo(n =0,s) =0. (2.18)

The solution to (2.17), (2.18) that satisfies the matching condition

lim Vp = hm Ug
n—00 —1

can be written as follows
_ G
Von,8) = (e *1 —1).

In order to construct a uniformly valid (R < r < 1) approximation to order
unity one should add functions @y and Uy and then subtract their common
part (see, for example, Kevorkian and Cole [5]):

a(r,s,e) = @ + % {exp [—\/5 (TJER)] + exp [_‘/E (1\;;)] - 1(}2:19)

It is clear that the function (2.19) does not satisfy (to order O(y/€)) the
condition of zero flux through the cross section of the annulus. Substituting
(2.19) into (2.8) yields

I—LRQ/RI ru(r, s,€) dr— 2 3_\/_+O( £). (2.20)
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On the other hand, substituting (2.9) into (2.8) we obtain

2 1
-2 /R [@o(r, s) + VE UL (r,8) + .. .]rdr = 0. (2.21)

Comparing (2.20) and (2.21) and using (2.13) yield

2 . 2G
ﬁ/l; raq(r, s) dr = “A-Rsvs (2.22)

Substituting (2.9) and (2.10) into (2.6) and collecting terms of order O(/¢)
we obtain

su1 = Q1. (223)
It follows from (2.22) and (2.23) that

2G i) = %
(I-Rsys’ " TTA-Rs

w1(r,s) = —

The equation for the boundary correction U;(€,s) near the wall »r = R is
obtained by substituting (2.14) into (2.6) and (2.7) and collecting terms of
order O(/¢):

e e GG
de? '""(1-RWs ' Rs

exp (—v/5§). (2.24)
The boundary condition is
U1(6=0,s) =0. (2.25)
Using the matching condition
Jim, U1(¢,5) = lim @ (r, 5)
and solving (2.24), (2.25) we obtain

2G

U6 = T Rave

[exb(=V38) = 1] = 5 £ exp(~V56).

The boundary correction V; (7, s) can be found in a similar way and has the
form

Fi01.5) = = gy 7z (V) = 1] = Sonexp(—in)
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The Laplace transform of the solution up to O(e) is

g = O[O L]

gl

+ exp [—%(1 - r)] - 1} + O(e). (2.26)
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Figure 1. Figure 2.

Applying the inverse Laplace transform to (2.26) we obtain the solution to
(2.2)-(2.5) up to O(e) in the form (other terms of the asymptotic expansion
can be constructed in a similar way):

(R*> + 3R —3Rr — r)erfcr - R

u(r,t) = g(r)—G+ 2—\/6_t

2R(1 - R)
G 1—7r

+ m(—B—R+5r—Rr)erfc2\/€_

t
+% 6;t{exp [—%} + exp [_(14_5:)2] —1}
+ O(e). (2.27)

Figures 1 and 2 show the velocity distribution given by (2.27) where

(1-R?%)

g(r)=1-r"-
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and

1+R?> 1-R?
G = + + .

2 2In R

The function (2.28) corresponds to the case of fully developed Poiseuille flow
in the annulus before sudden blockage. Both graphs indicate that the velocity
profile rapidly changes in the boundary layers near the walls while the core
region is characterized by relatively slow variation of the velocity.
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Pereinamasis klampusis tekéjimas Ziede
A. Kolyshkin, I. Volodko

I8nagrinétas klampiojo nespudaus skysCio vienas atvejis, kai procesas modeliuojamas antro-
sios eilés dierencialine lygtimi su maZu parametru. Sukonstruotas uzdavinio su pradine,
kragtinémis bei su nelokaligja salygomis formalusis asimptotinis sprendinys.



