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ABSTRACT

For solving a nonlinear operator equation in Banach space setting approximate variants
of the method of tangent hyperbolas are considered. This family of approximate methods
includes as special cases methods based on the use of iterative methods to obtain a cheap
solution of limited accuracy for associated linear equations at each iteration step as well.
A local convergence theorem and rate of convergence for the methods under discussion are
given. Computational aspects and possibilities of organizing parallel computation are dis-
cussed. Computational experience with various multiprocessors indicates that performance
of parallel methods depends critically on efficient load balancing. Problems of allocating
subproblems to the processors are also briefly discussed.

Key words: nonlinear equations, Banach spaces, methods with the high order of conver-
gence, approximate variants of methods, parallel computation

1. INTRODUCTION AND BASIC THEOREM

Many real-life problems can be modeled in terms of nonlinear equations

F(z) =0, (1.1)

1Financial support from the Estonian Science Foundation (grant N 5006) is greatly
appreciated.
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where F' is an operator from a Banach space X into another Banach space Y
and it is as many times as necessary differentiable.

The use of high order iterative methods for solving (1.1) sometimes en-
ables more rapidly and accurately to calculate values of the model than those
with a lower rate of convergence. Computational effort is often one of the
basic problems in the solution of real-life problems. The total cost of an it-
erative method is determined by the number of iterations needed to achieve
the required accuracy and the cost of each iteration. For computing a solu-
tion with the prescribed accuracy implementation of methods with the high
order of convergence require, as a rule, less iterations than methods with a
lower convergence order and therefore, likely, require less total arithmetics.
Methods with the high order of convergence making full use of the local infor-
mation (e.g. functional values gradient and Hessian) permit sometimes to win
in speed and accuracy. Frequently, only functional values are available and
their evaluation needs much computational work, e.g. the solution of inverse
problems, the solution of two-point boundary value problems in differential
equations by shooting method, computation of proper values for coordination
parameters in decomposition-coordination schemes in convex programming.
There are also many industrial problems in which the model code requires
much computation time and thus must not be called too many times. To save
solving of laborious subproblems the implementation of rapidly convergent
methods may be useful.

Another important aspect of computation is stability. Whereas even very
rough approximation to the operator of second derivatives in the method with
the convergence p > 3 may provide their numerical stability [4; 10] then it is
reasonable to develop methods based on a quadratic model

F(z. +d) = F(z.) + B(z.)d + H(x.)dd,
where z, denotes the current iterative point, d the increment of the argument
and B(z) ~ F'(z.), H(z) = F"(x).

One of the most popular methods with the convergence order three is the
method of tangent hyperbolas (or Chebyshev-Halley method)

Tht1 = Tk — T,;ll‘kF(a:k), (1.2)

1
where Ty, = [F'(zx)" and Ty, = I — §I‘kF”(mk)FkF(xk) [3; 7; 8; 13]. It can

be rewritten as
1
Tpp1 =z — [F' (1) — §F"($k)rkF($k)]_1F($k)- (1.3)

The name "the method of tangent hyperbolas" springs from its geometrical
interpretation [7] . Differently from above mentioned references in the proof of
a convergence theorem here instead of a Kantorovich condition we assume the
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existence of [F'(z)]! for all z the region under consideration. To get more
realistic impression of methods under discussion we study their approximate
variants as well unlike the papers [3; 7; 8] . The approach adopted by this

report is the use of iterative methods to obtain approximations for 7}~ ! and /or
I'y, or approximate solutions to the corresponding linear equations.

If A, ~T} and
L(z,z —y) = F"(z)(z - y), =,y € X,
then due to zx — yr = ApF(zr) and
L(z, Ax) = L(zk, AeF (zx)) = L(zk, T — Yi)
it follows from (1.3) that
Tp1 =z — Uy "ApF(2), (1.4)

where
1
Ur = ApF'(zx) — §AkL($k,Ak)-

If, in turn to use instead of U, ! jts approximation V; we get the method
Tk+1 = Lk — VkAkF(mk) (1-5)

Further on we shall suppose the existence and boundedness of the operators
[F'(zr)]!. Likewise we assume the existence of such constants a, 3, A, u, A,
M, K, G, Gy and sequences {71} and {72} so that the following inequalities
are valid

I1F' ()| < M, [|[F"(@)|| < K, [|Akll < pr < 1, 1A < Br < B,

Ve Akl < MellF(ze)l| < AlIF(@e)ll, Vel < A <A, (1.6)
(B, A A p < 00),

IT = UpVill < ik, maz{||I — AxF'(ze)ll, [T — F'(zx) Akll} < vor-

Theorem 1.1. Let 9 € X, S = {z € X : ||z — zo|| < p} and the following
condition are valid on p :

1° Operator F is twice Frechet-differentiable;

2° Second derivative satisfies a Lipschitz-condition

I1E"(z) = F" ()l < Lallz — yli;
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3° |[F"(z)(z - y) = L(z,z — y)|| < Gllz —yll?, IL(z,z —y) < Gillz -y,
G7G1 S Q3

4° There exist T'(z) and U~ (z) with ||T(z)|| < C and ||U ()] < Ci,
C, C1 < 0

5° 4 = 5(()i) <1, 4i=1,23,... (the quantity &y is defined differently in the
cases 1) — 3)).

Then the following results are valid:

1) If
Yie <vio <1, i=1,2

and r1 = M|F(x0)||/(1 = §) < p, then the equation F(z) = 0 has a solution

z* in S ||z* — xo|| < 71, to which the sequence (1.3) converges with

ok — 2*|| < 6%, 6 =88

Yo > Y1 > e > Yin > ... >0, and v — 0, as k — oo, then 5\ — 0
and the sequence (1.3) converges superlinearly with

k—1
llox — 2% <m0 I 65,
m=0

where

i 1 1
6 = Brmrie + Srem MK F @) + 572 I @)

1 1 1
+ RNKGIIF @I + B KGLIF @I + AL F @0l
2) If

Y1k < Co|F (), v2r <20, 720, C2 < 00,
§ =00 =dP||F(xo)| <1, d= lim d¥ >0,
k—oo
(2) _ 1 2 l 1 242
dy’ = BrurCa + 2720)\kK + Z(Mk)\chz + QMk)\kKG1
1
F N IF G,
then the equation (1.1) has a solution z* in S, ||z* — xo|| < r2, to which
the sequence (1.5) converges quadratically
o

lz — 2| < AHO (8)/d, HP(6) = S 6%, ro = AH (8)/d < p.

i=k
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3) If

ik < Csl|F (@)%, var < CallF(@p)ll, Cs,Ca < 00, 13 = H(8)/d < p,

where
BP©0) =36, § =6 = Vdo|F(zo)]| < 1
1=k
and

d= d((Js) = BopoCs + %HO/\OKCB + %)\ch4
+ BNEG + oG + é)\gLQ,
then the sequence (1.5) converges cubically
low — 2| < WVAH (3).

The proof of this theorem rests on a more general theorem from [11]. Since
the proof is rather complicated then it is omitted here and shall be presented
elsewhere in detail.

There are a lot of methods having a high order of convergence p > 2, but
in practice they are relatively little exploited. This is partially due to the
fact that their computational schemes of the execution of one iteration are
laborious, they frequently require the evaluation of derivatives of order greater
than one and a good initial guess since their advantages become evident in the
close vicinity of the solution. It is known that methods with the high order
convergence are in many cases more efficient than Newton type methods as
applied to solving nonlinear integral and differential equations [3].

2. PARTICULAR METHODS

Further we shall consider some possibilities how to avoid the evaluation of F"'
and thereby probably to reduce computational cost.
Approximating the term F"'(xy)AgF (zy) by the expression

1
L(zk, Ar) = 2[F" (2) = F' (21 — 5 ARE ()],
and using

F/(ai) — S F" o)k F () & F' (@ — 3 Lok, A) = F'(ai — 3 AgF()
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the method (1.2) becomes

1
Tpy1 = Tk — [F'(.’I}k — EAkF(."L'k))]ilF(.Z'k), (2.1)
Since
1 _ 1 _ _
[F' @k — S ARF (@) 7" = {A [ARF (2x) — SARL(ze, AR} = U As,
then (2.1) can be rewritten as
Tyl =T — Uk_lAkF(SL'k). (2.2)
If [T = UpVill < v = O(|F (zk)|*) and [T — F'(zx) Ak || < v2r = O(I|F (zx)|])
then by Theorem 1.1 the method (2.1) is cubically convergent.
The method (2.1) with A = I'y, coincides with the well-known midpoint
method. It is shown in [1] that midpoint method can be used for solving
equations with non-differentiable operators.

Another possibility to get rid of the evaluation of F" is to replace it by a
fixed bilinear operator:

1 -1
mhir = ax = (= SAPAF (@) AcF (o), (2:3)

where ® : X x X — Y is a general bounded bilinear operator. The method
(2.3) has similar computational cost as the Newton method but it remains
faster than the Newton method as shown in [5].

Replacing in (2.1) A by

F(©c )] and [F'(zy) — g AR ()]
by [F"(©)] ", where

Zo, if k= 0,
O = 1
S EE T 0 SN 3
the method (2.1) transforms to

Thy1 = o — [F'(OR)] 7 F(x4), (2.4)

having the convergence order equal to 1 + v/2.
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Indeed,

1 = Ak F' ()|l = | F'(©k-1)] " (F' (Ok-1) = F' (a4
< SCKIF' @) HlIF @l

i.e. yo, = O(||F (z-1)||) and it can be shown that in this case the prevailing
term in the Taylor series for F(zy41) is O(||F (zk—1)||||F(zk)||?) which implies
that convergence rate is equal to 1 + /2 (see for [9]).
Let W}, be an operator which approximates the inverse [F"(zy — 3 Ay F(z1))] 1,
then Wy can be written as Wy = Vi Ay with Vi = Uy ! because of [F'(z1,—
—%AkF(xk))]*l = Uk_lAk and A, = [Fl((“)k_l)]_l.

If ||I — UpVi|| = O(||F (zr—1)||||F (zk)||?), i-e. if the approximation error is
not greater than O(||F(zkg—1)||||F (zx)||), then the convergence order equal to
1+ /2 is preserved.

3. ORGANIZING PARALLEL COMPUTATIONS

One of the potential ways to reduce the total time needed for computing a so-
lution with a prescribed accuracy is the use of parallel computation. Methods
with the high order convergence offer various possibilities to organize parallel
computation. Further, we shall discuss some aspects of parallel computation
concerning rapidly convergent method as applied to the solution of problems
of moderate size in finite dimensional spaces. The process is organized by
designating the computers (processors) as the master (that coordinates the
process of the other computers) and slaves (that execute different tasks). In
the beginning of the computational process the researcher allocates a certain
number of subproblems to the processors. Computational experience with var-
ious multiprocessors indicate that performance of parallel methods depends
critically on efficient load balancing. Herewith, communication cost must be
considered. Sometimes the communication complexity is higher than the com-
putational complexity, in other words, more time is spent routing data among
processors than actually manipulating data [2].

One possibility to save arithmetic operations on a sequential computer when
using an inexact Newton method is to recalculate the Ay explicitly after a
certain number of iteration steps while at the intermediate steps, say at [
ones, to use the formula

Ak_Hui = Ak+i—1[2I - F'(a:kHAk_H_l]ui, 1= ]., ceey l, (31)

where u; = F(2g+;) and Ag4;u; is calculated by matrix-vector multiplication,
i.e. the linear operator Ag4; is defined by the recurrence formula (3.1) [6].
This idea will be used by us for organizing parallel computations.
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First we consider a Newton-type method

Tpy1 = 2 — ApF (1), (3.2)
Apy1 = Ag(2I = F'(x1) Ag), (3.3)

where zo and A are initial approximations to the solution z* and [F'(z*)]~!
respectively, i.e. Agy1 ==~ [F'(z)]~t, while values of expression like (3.1) can
be computed using parallel linear algebra computation. If only one processor
is in use and instead of the execution the formula (3.3) to compute Ay =
[F'(zr)]~!, then we get from (3.2) the usual sequential Newton method. If we
apply two processors and take Ay = [F'(x;—1)]~" while using one processor to
compute Tjt1 by the formula (3.2) and the other one to compute F'(x_1)] 7!,
then we obtain a parallel variant of the Newton-type method

Tht1 = Tk — [F'(mk_l)]_lF(wk). (3.4)

Method (3.4) has two serious disadvantages:
* its convergence order is (1 + v/5) = 1,618;
* the processors are unequally loaded and one of them stays idle.
Note, that its convergence rate follows easily from Theorem 1.1.
To alleviate the problem of unequal load balancing we consider the following
accelerated synchronous parallel Newton-type method

Pt = 2 — Ap S0 — F(o) An) P, (3.5)
=0
Ao = 4 Y (T - P A, 4 =[Fom], (36
i=0

which according to the convergence Theorem 1.1 (see also [11]) has the con-
vergence order equal to two provided p,q > 2. The use of the modified formula
(3.5) instead of (3.2) permits to increase the convergence order at the cost of
additional computational work of order O(n?) using matrix-vector multiplica-
tion. Matrix multiplications are attainable by means of scalar products that
are independent and therefore can be performed simultaneously. There are
different types of matrix multiplications that are suitable for parallel execution
on computers with certain given structure [2].
Let us now consider a synchronous parallel variant of (2.1)

1
Yk = Tp — §AkF($k)a (3.7)
Tk4+1 = Tk — BkF(IL'k), (3.8)
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where

p—1

Ak = Fk—l Z(I — F,(.'L'k)rk:—l)ia
=0
q—1

B, =T}_1 Z(I - Fl(yk)rk—l)l’
=0

are computed by matrix-vector multiplication on the master processor and
I'y_1 is computed explicitly on another processor. From Theorem 1 [11] it
follows that method (3.7), (3.8) has the convergence rate equal to 3 provided
p,q > 6. For p > 1 and ¢ > 2 the convergence order is equal to 2.

4. CONCLUDING REMARKS

The use of parallel algorithms under discussion permits to obtain, as by-
product, approximations to inverse operators of F’. Knowledge of [F']~!
or its approximation is desirable in many cases. It facilitates to evaluate a
condition number and thereby to estimate stability of iterative processes, to
obtain error bounds, to pass easily on to interval-arithmetic versions based on
Krawczyk transformation, etc.

Although iterative methods with the convergence order p > 2 have interest
in their own, they seem to be very useful in polyalgorithmic computational
schemes. The property of global convergence is a criterion for robustness of
the algorithm. A widespread strategy is the use of a Newton-type method
if it works, otherwise, to switch on a slower but more sure global method,
e.g. on a method based on the steepest descent direction. A combination of
the steepest descent method with the midpoint method or its variants with
Ay, = T, is expected to be more efficient in the sense of stability than one with
a Newton-type method, and that benefit should probably repay the additional
computational cost per iteration. The reason for doing so is that the Newton
method and its numerous variants are unable to perform efficiently (converge
quickly) or even can break down if F' is ill-conditioned or singular, since
they are based on a linear model but iterative methods of order p > 3 use
at least a quadratic model. For the same reason, they perform efficiently in
the globalization of iterative processes if one uses a continuation strategy. As
in generally known, homotopy methods suffer from the disadvantage that the
Jacobian at some iterative points may become singular [12]. A more thorough
discussion of polyalgorithmic approach and a few results of computational
experiments concerning the methods under discussion can be found in [11].

Asynchronous parallel methods using the same idea for parallelization seem
to be more promising and those will be discussed in the future.
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Apie hiperbolinio tangento aproksimacijos metodus
I. Kaldo, O. Vaarmann

Netiesiniy operatoriny lyg€iy Banacho erdvéje sprendimui nagrinéjami kra$tiniy hiperboliy
metodo variantai. Siy metody Seima apima specialiuosius metodus, pagristus iteraciniais
metodais, kurie jgalina gauti bloga sprendinj su tam tikru tikslumu, sprendZiant susijusias
tiesines lygtis kiekvienoje iteracijoje. Pateikta lokalaus konvergavimo teorema bei konver-
gavimo greitis. Svarstoma skaiiavimy iSlygiagretinimo galimybés. Skai¢iavimo eksperi-
mentas su jvairiais multi-procesoriais rodo, kad lygiagre€iyjy metody vykdymas priklauso
i§ esmés nuo atliekamo darbo i§balansavimo.



