MATHEMATICAL MODELLING AND ANALYSIS
VoLuME 7 NuUMBER 2, 2002, PAGES 241-252
© 2002 Technika

ON THE SOLUTION OF ILL-POSED
PROBLEMS BY PROJECTION METHODS
WITH A POSTERIORI CHOICE OF THE
DISCRETIZATION LEVEL!

U. HAMARIK, E. AVI and A. GANINA

University of Tartu
Liivi 2, 50409 Tartu, Estonia

E-mail: uno.hamarik@ut.ee, evelin.avi@ut.ee, alina.ganinaQut.ee

Received October 1, 2002; revised October 30, 2002

ABSTRACT

We consider linear ill-posed problems Au = f with minimum-norm solution u«. Instead of
f noisy data f9 are given satisfying ||f® — f|| < § with known noise level . The projection
methods for finding approximation u, to u. are discussed in assumptions guaranteeing in
case f& = f the monotone convergence wu, — s (n — o0). In noisy case § > 0 we propose
for two projection methods a posteriori rules for choice n = n(4) as largest n = 1,2..., for
which inequality ||un — ux|| < ||un—1 — u«|| can be proved. Numerical results are given.

Key words: ill-posed problems, projection methods, a posteriori rule.

1. INTRODUCTION

In this paper we consider linear ill-posed problems
Au=f (1.1)

where A € L(H, F) is a bounded operator with the non-closed range R(A)
and H, F are infinite dimensional real Hilbert spaces with inner products (-, -)
and norms || -||. We suppose that f € R(A). The null-space N (4) of operator
A can be non-trivial. We are interested in the minimum-norm solution wu.
of problem (1.1). It is assumed that instead of exact data f there are given
noisy data fo € F with ||f® — f|| < § and known noise level §. The typical
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feature of ill-posed problems is unstability of the solution of the problem
Au = f? with respect to noise in data and therefore solution procedure must
use noise level. Ill-posed problems are typically solved by iteration methods
or by special regularization methods (the Tikhonov method etc, see [3; 14;
21; 27]). For using computers in solution procedures the discretization of
the problem is unavoidable. If certain problems are successfully discretized,
additional regularization is not needed. Namely, if the discretization method
converges in the case of exact data f, then in the case of noisy data f° this
method can be viewed as regularization method, when the discretization step
as a regularization parameter is properly chosen according to the noise level
0. This phenomena is called as self-regularization by discretization (see [25]).

In this paper we consider the projection methods for problem (1.1). For
well-posed problems projection methods are thoroughly investigated (see [16]),
corresponding convergence conditions are not very restricting. For ill-posed
problems the convergence conditions of projection methods in the case of exact
data f° = f were stated in [1; 2; 4; 5; 7; 13; 18; 19; 20; 22; 25; 26; 28|. These
conditions for traditional projection methods (the least square method, the
Galerkin method, the collocation method) are quite restricting.

The plan of this paper is the following. Section 2 is a short review (based
on paper [25]) of the results of the projection methods for ill-posed problems
in the Hilbert spaces, concerning convergence conditions in the case of exact
data f% = f, but also self-regularization conditions, if the dimension of the
discretized equation is chosen a priori or by the discrepancy principle. In
Sections 3, 4 we consider the least error method and a special collocation
method for integral equations of the first kind respectively. These methods
have a specific feature: they converge in the case of exact data by very mild
conditions. For the case of noisy data we propose a new a posteriori rule (the
monotone error rule) for the choice of dimension of the discretized equation.
In the final section of this paper numerical examples are given.

2. CONVERGENCE OF PROJECTION METHODS

Let H, F are Hilbert spaces and H,, C H, F,, C F' (n € N) are corresponding
finite-dimensional subspaces with dim H,, = dim F;,,. We denote the corre-
sponding orthoprojectors by P, and Q,, i.e. P,H = H,,, Q,F = F,,. In the

projection method we take as approximation to solution w, of equation (1.1)
element u,, € H,, satisfying conditions

Up € Hyy (Aup — f2,2,) =0 (Vz, € F,). (2.1)
The last conditions are equivalent to the equation
QnAun = an67 un € Hy. (22)

In the following we give from [25] two theorems about the convergence con-
ditions of projection methods in the case of exact data (Theor. 2.1) and also
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in the case of noisy data with a priori choice of n (Theor. 2.1) or with the
choice of n by the discrepancy principle (Theor. 2.2). We denote by A* the
adjoint operator of A and use also notions

l|len | . _ l|znll
" .€F. (| A* 2|

Kn = Sup
" wn€Hy (| Acon| ’

Theorem 2.1. Suppose that N(A*)NF, =0 (Yne N),

| — Ppu|| >0 for n—>oc0 (VueH), (2.3)

|PrA* || > 7*||A%2n|| (V2n € Fp,m € N), 7" =const >0. (2.4)

Then equation (1.1) has the unique solution u. € H and equation (2.2) has
the unique solution u, € H,. If 6 = 0, then u, — ux for n = oco. If 6 > 0,
then up(s) — u« as § — 0 for such a choice of n = n(é) that

n(d) — oo, Okips =0 for 6—0. (2.5)
Theorem 2.2. Suppose that (2.3), (2.4) hold and
NA)NH,=0 (VneN), (2.6)

|QnAwy|| > 7||Awp|] (Vwn € Hp,n € N), 7 =const >0,

k1 [|(T = Q) All <+ = const (Vn € N),

where Q! is the orthoprojector in F' to AH,. Then equation (1.1) has the
unique solution u, € H and equation (2.2) has the unique solution u,, € H,.
The convergence uy(5) — us for § — 0 holds by the choice of n = n(d) by the
discrepancy principle: n(08) is first index n € N satisfying

| Au, — f°|| < b6, b=const, b>r"L (2.7)

In the following three theorems the previous two theorems are concretized
for specific projection methods (2.2), which are characterized by different
relations between subspaces H,, and F,,. We consider the least error method
(H, = A*F,,), the least square method (F,, = AH,) and in the case F = H,
A = A* > 0 also the Galerkin method (F,, = H,,). Proofs can be found in
[7; 8; 25]. The name of the least error method can be explained as follows.
Let fo = f. Then element u, € A*F,, which minimizes ||u, — u.||, satisfies
condition (u, — us, A*z,) = 0 (Vz, € F,), which is the same condition as
(2.1).
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Theorem 2.3. Let N (A) = 0, N(A*) =0 and ||z — Qnz|| = 0 forn — oo
(Vz € F). Then the least error method determines for all n € N the unique
approzimation un,. If § =0, then u, — us forn — oo. If § > 0 and n = n(J)
is chosen a priori by conditions (2.5), then u,is)y — us for 6 = 0. The last
convergence holds also in the case, if there exists o € R, o > 0 such that

(k7)1 = Qu)(aA)2|
(K141) || = @n)(AA)2/2|| < const (VneN)

IN

v=const (Vn e N),
(2.8)

A\

and n = n(6) is chosen by the discrepancy principle with b > (14 ~42)*/? (see

2.7)).

Theorem 2.4. Let N(A) = 0, ((2.3)) holds and there exists a € R, a > 0
such that

(Kn + £n1) || (I = P)(A*A)*/?|| < const  (¥n € N). (2.9)

Then the least square method determines for all n € N the unique approxi-
mation u,. If § = 0, then u, — u, for n — oo. If 6 > 0, then convergence
Un(s) = Ux as 6 — 0 holds for the a priori choice of n = n(8) by the rule

n(d) = oo, Okin) =0 for 6—0 (2.10)

and also by choice of n = n(§) by the discrepancy principle with b > 1 (see

(2.7)).

Theorem 2.5. Let H = F, A = A* > 0 and ((2.3)) holds. Suppose that
there exists a € R, a > 0 such that

KA|(I = Po)A%|| <, &Ko ||(I— Pu)A%|| < const (Yne N). (2.11)

Then the Galerkin method determines for all n € N the approzimate solution
Un. Ifd =0, then up — ux forn — oo. Ifd > 0, then convergence un5) — Ux
as § = 0 holds for the a priori choice of n = n(d) by rule (2.10) and also by
choice of n = n(d) by the discrepancy principle with b > 1+ (see (2.7)).

Note that the self-regularization of ill-posed problems by projection meth-
ods was studied also in [1; 2; 5; 6; 7; 8; 13; 15; 17; 18; 20; 22; 23; 26; 28]. From
considered methods particular interest is presented by the least error method,
converging in the case of exact data by mild conditions. This convergence
was stated already in [4]. In the case of noisy data for the least error method
convergence sy — u« as 6 — 0 has been proved in [2; 5; 17; 20; 25] for the
a priori choice of n = n(d), and in [6; 15; 25] for choosing n = n(d) by the
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discrepancy principle. Note that the a priori choice of n = n(d) by condition
(2.5) is problematic — we need to calculate or estimate k). The choice of
n = n(d) by the discrepancy principle is more practical, but has a limited
sphere of applicability (see the strong conditions (2.8)).

Note that condition (2.8) and analogous severe conditions (2.9), (2.11) are
fulfilled by the solution of integral equations of the first kind with the kernels
of the Green type function, if spline subspaces H,, or F, are used (see [25]).

3. MONOTONE ERROR RULE IN LEAST ERROR METHOD

The choice of the regularization parameter is an actual problem in all regu-
larization methods. Lately for the choice of regularization parameter r = r(J)
in some regularized approximation u, the monotone error rule (ME-rule) was
proposed. For resulting parameter ryg convergence Uy, — s as § — 0
was shown and order optimal error estimates were given (see [9; 10; 11; 12;
24]). The ME-rule is applicable in algorithms, where in the case of exact data
f% = f the monotone convergence u, — uy for r — oo holds. The idea of the
ME-rule is to choose in the case of noisy data for regularization parameter
rme = r(8) the largest r-value, for which under information ||f° — f|| < &
we can prove that ||u, — u,|| is monotonically decreasing for r € (0,rmg].
For continuous regularization methods as the Tikhonov method, where u, is
differentiable with respect to 7, this means that %Hur — u.]|> < 0 for all
r € (0,rmg). For iteration methods where regularization parameter r is the
stopping index n € N, this means that

|[un — wil| < ||n—1 —us]| for n=1,2,... nyg. (3.1)

Let us consider now the problem of developing the ME-rule for projection
methods. In these methods the regularization parameter n € N as in iteration
methods and the ME-rule should give nyg = n(d) satisfying condition (3.1).

The aim of this section is to develop the ME-rule for the least error method.
We assume that the subspaces F), fulfill the condition

FoCFupi (n=0,1,..) (3.2)

and we show that then the ME-rule is applicable in the following form.
ME-rule: choose ny g = n(d) in the least error approximation u,, = A*v,
(v, € Fy,) as the first index n = 1,2,. .., for which

(Un—i—l _Unafé) B

d =
ME(M) = s = vl =

(3.3)

Note that we get the element v,, € F,, in a computational procedure auto-

matically without extra work. The function dyg(n) can be represented also

in the form

llunta]* = [lunl®
2|lvnt1 — vnl|

dur (n) = (3.4)
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Namely, for the approximation u,, = A*v,, (v, € F,) in the least error method
we have

||Un||2 = ”A*Un”2 = (AA*v, — f6 + féavn) = (Au, — féavn) + (féavn) -

So as (Au, — f%,v,) = 0 due to conditions (2.1), the previous equality attains
the form

lunll* = (£°,vn) . (3.5)

From the last equality follows the equality of functionals dyg(n) in (3.3) and
(3.4).

In the following theorem some properties of approximations u, and func-
tional dyg(n) are given.

Theorem 3.1. Let subspaces F,, in the least error method satisfy condition
(3.2). Then:

1) ||Jun|| < ||unt1]| (VR € N),

2) 0 < dyg(n) < ||Au, — f°[|/2 (Yn e N),

3) if £9 = f, then lup — usl| < lun—1 —usl| (n=1,2,...),
4) if fo # f, then (3.1) holds.

Proof. From the equality
N(QnA) = (R((QHA)*))J_ = (R(A*Qn))J_ = (A*Fn)J_ (3'6)

follows that approximation u, € A*F, in the least error method is the
minimum-norm solution of the equation Q,(Au — f°) = 0. Indeed, due to
(3.6) all solutions of equation @Q,(Au — f%) = 0 have form u = u,, + u/, with
un € A*F, and u!, € (A*F,)L, but ||up + ul||? = [Junl? + |Jul]]> > [|usl?.
From (3.2) follows that u,y; solves both equations Qi i(Au — f°) = 0
and Q,(Au — f%) = 0. This fact with property u, = argmin{||u|| : v €
H, Qn(Au— f%) = 0} gives ||un|| < ||tnt1]|, hence the assertion 1) is proved.
The assertion 1) with equality (3.4) gives the left inequality dugr(n) > 0 in
assertion 2). So as u, and u,;1 both solve equation Q,(Au — f°) = 0, the
equalities (Auny1 — fO,vn) = 0, (Au, — f,v,) = 0 are true (see (2.1)). It
yields equality (A(unt1 — un),vs) = 0, via relations

(Atp, Vny1 — vn) = (A4, Vg1 — v5) = (U5, A(Unt1 — ug))

also equality (Aun,vny1 —vn) = 0. Hence the functional dug(n) in (3.3) can
be written also in the form dyr(n) = (Aun — £°,vn — vnt1)/[2lvn — Vnaall]
and has estimate ||Au,, — f°||/2 (the right inequality in assertion 2)).
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To prove assertions 3), 4) we use equalities (3.5), u, = A*v,, Au. = f,
inequality ||f° — f|| < & and get

ln—1 = well? = llun = wall® = Nun-1ll® = lluall® = 2(un—1 — un, us)

= (f°,vn-1) = (f°,0n) = 2(Vn—1 — vn, Aus)
(vn = vno1, O+ 2(f = £°))
> (vn = V-1, f°) = 2lvn = va 1l f = £l
> 2[jon — vpall(dur(n —1) —6).

Thus it holds the implication dyg(n — 1) > § = [|up — us|| < |[un_1 — ]|
It proves assertions 3), 4). Theorem 3.1 is proved. B

From the estimate duygr(n) < ||Au, — f°||/2 follows that nyr < npa,
where np» is parameter, get by the discrepancy principle (2.7) with b = 2.
But it is worth to emphasize that according to Theorem 2.3 the discrepancy
principle in the least error method requires using of constant b, which is large
enough (b > (14++2)%/? with a and v from conditions (2.8)). For example, the
problem, solved in the numerical experiments of Section 5, requires b > 14+2v/3
(see [7])-

It is an open problem whether w5 — u« for 6 — 0.

4. ME-RULE IN SPECIAL COLLOCATION METHOD FOR IN-
TEGRAL EQUATIONS OF THE FIRST KIND

In this section we consider the integral equation of the first kind

w0 = [ Kt sueds =) 0<t<1)
0

with operator A : L2(0,1) — L2(0,1) and f € C[0,1]. We assume that for all
discretization levels n = 0,1, ... some sets of m = m(n) knots {¢; € [0,1], i =
1,...,m} are given with ¢; # t; for i # j. Consider an analogue of the least er-
ror method, giving approximation u, € H, = SPAN{K (t1,5),...,K(tm,s)},
which minimizes |[un — t«||L,(0,1)- Then (un — s, K(ti,8)) =0 (i =1,...m
in case fO = f. The exact solution u, satisfies

1
(us, K (t;, 8)) /K ti, S)ux(s)ds = f(t;) (i=1,...,m). (4.1)
0
If instead of f noisy data f¢ are given, for determining u,, relations

1
(tn, K (t;, 5)) /Ktz,sun (s)ds = f(t;) (i=1,...,m) (4.2)
0
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can be used. Hence we get for determining the coeflicients ¢ in representation
m(n)

Up = Y. c} K (tj,s) the system of linear algebraic equations
i=1

m L
Z/K(t]’,s)K(ti,S)dS = o) (=1,...,m). (4.3)
j=1 0
We assume that system {K(t;,s)}7, is a linearly independent system in
Ly(0,1) for all s € [0,1]. Then system (4.3) is uniquely solvable. This
assumption is not very strong while otherwise for all f € R(A) the set
{f(t1),-.., f(tm)} would be linearly dependent (see (4.1)).

The special collocation method, discussed above, was considered in papers
[1; 2; 18; 19; 26; 28]. We give for the case of exact data and m = n + 1 the
following convergence theorem from [26].

1
Theorem 4.1. Let [ |K(t,s)|*ds < c=const (0<¢<1),
0

1
/|K(t',s)—K(t,s)|2ds—)0 for ' =t (0<t t'<1).
0

Then Aligo [lun, — us|| = 0, where A, = t;él,)l] 1§i?§fm |t — til.

For case f° # f and m = n + 1 in papers [1; 2| the following result about
convergence by the a priori choice of n = n(d) was proved.

Theorem 4.2. Let Y. (f°(t;) — f(t:))* < 8,,. Let \, be the least eigenvalue
i=1
1

of the matriz Q(t;,t;) = [ K(t;, ) K (t;,7)dr (1 <4, j<n). If
0
lim A, =0, lim §,=0, lim 62);' =0,
n—oo n—oo n—oo

then ||u, — ux|| = 0 for n — oo.

We do not know from literature any a posteriori rule for choice of n = n(d)
in this special collocation method. In the following our aim is to formulate the
ME-rule. We assume that on discretization level n set of knots {¢;, i € I} is
used, where index sets I, satisfy

I,Clyyy (n=0,1,...). (4.4)
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Let noise e(t;) = fO(t;) — f(t;) in every knot ¢; satisfy
|e(ti)] < 8;. (4.5)

From (4.1), (4.2) we get the equalities

(unsus) = D I (ti8),us) = D e f(t3),

iel, i€l,

lunll? = 3 (K (ti,8),un) = 3 £2(8:)-

iel, i€l,

Using them and (4.4), (4.5), we have

llun—1 = usl* = [lun — us||* =

”un”2 - ||Urrl||2 +2(Un 1 — U, Un 1) — 2(Up — Us, Up,)

llunl® = llun—1]l* +2 IZ ;e — 2 ZII ciei
1€ln—1 1€l

= Junl? = llun-al? =2 ¥ etz 3 (7 - e
P€Tn [Tn—1 i€ln—1

> ual? = lunal?=2] 5 lelsi+ ¥ et - cpla]
1€L, [In_1 i€, —1

Hence condition (3.1) holds for the choice of nyg by the following ME rule:
choose nyg = n(d) as the first index n = 1,2,.. ., for which

lunsal? = unl® > 2] 57l g+ 3l = cta]
1€l 41 /In iel,
Note that wu, and wu,4; are the minimum-norm solutions of equations
1
J K(ti,s)u(s)ds = f(t;) with i € I, and i € I,y respectively (see [1; 2;

0

19]), hence due to (4.4) ||unt1|| > ||un|| (YVn € N). It guarantees for exact

data f° = f monotonicity of error: |[un — us|| < [|un—1 —us|| (n =1,2,...).
It is an open problem whether u,,,, — u. by suitable assumptions.

5. NUMERICAL EXAMPLES

We consider a simple integral equation of the first kind

Aut) = / w(s)ds = f(2) (5.1)
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in an L%-space setting with H = F = L(0,1). We assume that f(0) = 0
and f' € L3(0,1). Then the equation (5.1) has the unique solution u, = f.
The problem (5.1) was solved by the least error method with subspaces F,
consisting of piecewise constant functions on k¥ = k(n) = 2" subintervals
generated by m = k+1 uniform mesh points t; = (i—1)/(m—1),i=1,...,m:

_ o s — = [ te[titiva]
F,=SPAN{¥;(t), i=1,...,k(n)}, ;)= { 0 otherwise.
It is clear that these subspaces fulfill condition F,, C F,y; in (3.2) — by
transition n — (n + 1) every subinterval will be halved. The approximation
u, which we get by the least error method, is in the case of exact data the
best approximation of u, in subspace H,, where

Hy = SPAN{A*U;(t), i =1,..., k(n)},

1/k for te0,¢;)
AT, (t) = tiy1 —t for te [ti,t’i+1)
0 for te [ti+1, 1] .

In computations instead of f noisy data f¢ with ||f? — f|| < § were used.
The parameter n = n(d) which determines the number & = 2™ of subintervals,
was chosen by the monotone error rule (giving nyg) and by the discrepancy
principle (giving np) with b = 1+ 2v/3: np is first index n satisfying || Au,, —
fOll € (1 +2v3)8. Note that the discrepancy principle in the least error
method for the problem (5.1) is theoretically justified only for b > 1 4 2v/3
(see [7])-

We give the results of computation for two examples with different right-
hand sides f and solution u,.

Ezample 1: u.(t) = Zcos (), f(t) =sin (&), fO(t) = f(t) +6;

Ezample 2: u,(t) = 216 — 845 — 3243 11, f(t) = 347 — 116 — 21 + 1,

fo)y=f@-a.

We computed besides nye and np also nept as the last number for which
inequality |Jun —ux|| < ||[up—1 —ux|| was true. In all cases for nopt +1,1 =1,2,3
we had the opposite inequality ||un — ux|| > ||un—1 — u]|-

In the following Table 1 we give numbers of subintervals k = k(n) = 2",
corresponding to the parameters ngpe, nvE and np: kopy = 27°r*, kyp = 2™M®,
kp = 2™, The errors ey(n) = ||un — u.|, corresponding to kopt, kme and kp
are also presented.

Note that due to (3.1) always holds nue < nept. As Table 1 show, in both
examples index nyr was not very much smaller than the optimal index ngp:
for § = 1072 we had nuE = nept — 2, for other § we had nyE = nepy — 1.
However, in practical problems nqp¢ is unknown. From the Table 1 we can also
see that in both examples the ME-rule gave better results than the discrepancy
principle, hence one can recommend to use the ME-rule for choice of n.
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Table 1.

4 kopt kvEe kp Ckopt kv E €kp
101 1 1 1 219 219 219
Ezample 1 10~2 4 1 1 .038 .219 .219
10-3 8 2 2 .0055 .0276 .0276
104 16 8 4 .0008 .0017  .0065
1075 32 16 8  .0001 .0004 .0017
) kopt kmE kp €kopt CkvE €kp
101 1 1 1 202 202 202
Ezample 2 10—2 4 1 1 052 202 202
103 16 8 4 .0077 .0102 .0372
10-% 32 16 8  .0011 .0020 .0088
1075 64 32 16 .0002 .0004 .0019
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Nekorektisky uzdaviniy sprendimas projekciniais metodais su apos-
terioriniu diskretizacijos zingsnio parinkimu

U. Hamarik, E. Avi, A. Ganina

Darbe sprendziamas nekorektiSskas uzdavinys Au = f ir ieSkomas normalusis sprendinys
ux. Vietoj f apibréziamas triuk§mo paveiktas 3altinis f9, tenkinantis nelygybe || — f|| <
4, ¢ia § yra zinomas truk§mo lygis. Analizuojami projekciniai metodai, leidziantys rasti
sprendinio u. artinj u,, apibréziamos salygos, garantuojancios, kad u, — ux(n — o0)
monotonigkai, jei fO = f. Jei § > 0, tai sitlomos dvi aposteriorinés taisyklés n = n(d)
parinkimui, leidzian¢ios jrodyti, kad projekcinio metodo sprendiniui dar galioja nelygybé
[lun — ws|| < ||un—1 — u«||- Pateikti ir iSanalizuoti skaitinio eksperimento rezultatai.



