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ABSTRACT

In this paper numerical methods for mixed integral equations are presented. Studied equa-
tions arise in the mathematical modeling of the spatio-temporal development of an epidemic.
The general theory of these equations is given and used in the projection methods. Pro-
jection methods lead to a system of algebraic equations or to a system of Volterra integral
equations. The considered theory is illustrated by numerical examples.
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1. INTRODUCTION

Let M be a closed subset of m-dimensional Euclidean space R™ (m = 1,2,3)
representing the habitat of a population susceptible to some contagious dis-
ease. Let the functions S = S(z,t) and I(z,t) denote the density of suscep-
tibles and infectives respectively at position z and time ¢. Let i(z,¢,s)ds be
the density of infectives which were infected some time between ¢ — s and
t — s —ds. Then

I(z,t) = 71(30, t,s)ds.

Suppose that the population size is large so that one can consider S, I and
i a sufficiently smooth real-valued function of their arguments. The spread
of the disease in the given population can be described by a mixed integral
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equation of the form

t
umﬂ=f@ﬁ+//%@M@¢wwMM&M@®J%ﬂGDZMH&H-
0 M

So(z) = 85(0,z) >0, g(y) :=1—exp(—y), f(z,t)= [ h(z,s)ds,

o .

where
t
h@ﬂ=//%@@ﬂ%”%w@@7%@@=N%Qﬂ
0 M

Assume that:

(i) the disease has permanent immunity, so the transition from I to S does
not occur,

(ii) a nonnegative function A(z,t,y) describing the infectivity at position z
due to one infective of "age of illness" ¢ at position y determines the infec-
tivity

B(z,t) Z//i(y,t,S)A(w,s,y)dde-
0 M

Presented model of an epidemic follows from the following system of dynamical
equations:

oS

E(xat) - —S(.’E,t)B(.’If,t),
. a8

i(z,t,0) = E(m,t),

i(z,t,8) = i(z,t —s,0).

Detailed descriptions and analyses of the above considerations may be found
in [2], which leads to a nonlinear integral equation of the mixed type

u(z,t) = f(z,t) +//k(w,t,y,s)g(u(y,s))dyds,

that in the case g(u) = u is a linear equation.
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In this paper we restrict numerical methods to linear mixed integral equa-
tions because the convergence analysis of numerical methods for nonlinear
equation depend crucially on the representation of the solution for linear equa-
tion.

2. GENERAL CONSIDERATIONS

The mixed integral equation

¢
u(z,t) = +//k z,t,y, s)u(y, s)dyds, (2.1)
0 M

is considered, where f is given function in domain D = M x [0,7] (M is a
compact subset of m-dimensional Euclidean space) and u is unknown function
in D. Given kernel k is defined in domain

Q= {(z,t,y,s) 1x,y € M, OSSStST}.

Integral equations of this type arise in various physical, mechanical and bio-
logical problems (for example — heat conduction theory and diffusion theory).

The general theory for the considered equations in weighted spaces was
presented in [4]. Approximate solutions of mixed integral equations were
studied in papers [1], [3] — [7]. The mixed integral equation (2.1) can be
written in the operator form

u=f+ Ku, (2.2)
where
t
(Ku)(z,t) = k(z,t,y, s)u(y, s)dyds (2.3)
[

is the integral operator in that a Volterra part plays the dominant role. On
virtue this property we can prove existence and uniqueness of solutions for
equation (2.1) in spaces C' and L?(p > 1).

3. GALERKIN TYPE METHOD

Classical Galerkin method for integral equation (2.1) leads to approximate

solution of the form
t) = chXj(mat)a
j=1
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where {x;} is the orthogonal basis in the space L?(D). Because it is difficult
to define such a system we propose the following formula

ik=1

where {¢;},{¢} are orthogonal bases in spaces L*(D) and L*[0,T], respec-
tively. Coefficients (cix i,k = 1,2,...,n) are determined by the orthogonality
condition in L?(D) of the form

(Ena(pi/(ﬁk) = 07 (Zak = 152a" 'an)a where En = Un — f - Kun;

is a deviation function. In practice, we restrict our considerations to the
orthonormal basis. Then we get the following system of linear algebraic equa-
tions

cik = fur + Z Cimkim,ik, GHEk=1,2,...,n, (3.2)

jm=1

where

T
fir = f (@, t)pi(x)r (t)dzdt,
/]

Ejm,jk = /T/ [j/k(w,t,y,8)¢j(y)¢m(s)dyds @i(x)y (t)ddt.

Theorem 3.1. Let {¢;}, {¢r} be orthonormal complete systems in the spaces
L*(M) and L?[0,T], respectively. If f € L*(D) and k € L*((2), then system
(3.2) is uniquely solvable and the sequence defined by formula (3.1) converges
to unique solution of equation (2.1) in the space L*(D).

The proof is similar as in the case of the Fredholm integral equation and it
is based on the Fourier series theory.
We illustrate the presented method for the following integral equation

t 1

w(z,t) = f(zt) + / / k(z,t,y, s)uly, s)dyds, ¢ € [0,1]

0 -1

using in (3.1) as a basis the orthonormal Legendre’a polynomials.
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I. Implementation in Maple V

B:qa/@@ﬁ%t
0
1 1

gn = (p,q) = f(@,t)p(p, v)(q, t)dzdt
/]
Vgn := vector(n X n)
for pl.n
for ql.n
Van[n(p— 1)+ q] :== —gu(p,9)
end
end
op(Vqn)

kn = (i,4,p,q) =
1 1

11

[ 1] [ #ets0etini.9)]dvds - oo, 000, 1o
01 01

Mk, := matriz(n X n,n X n)

for pl.n

for ql.n

row:=n(p—1)+gq

for il.n

for jl.n

Mky[row,n(i — 1) + j| == kn(i,4,p,q) end end

Mk, [row,row] := Mk, [row,row] — A(p)B(q) end end

foriton
for jton
cij := solve[n(i — 1) + jlod od
op(Mk,)
solve := linsolve(Mkn,Vgn)
op(c)
ud = (z,t) = > _ (D cijep(i,x)) (G, ).

Jj=1 i=1
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I. Numerical examples
Example 1

t 1
1 5. 1. 1. .
u(z,t) = xsint+§$2tzet cost—gasthet sint—§$2t2+//ya:thesu(y,s)dyds
01
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Figure 1. n=3 n=>=5

Example 2

t 1
2 2
u(z,t) = ¢ +sint — get + 3 + //yesu(y, s)dyds
0 -1

Absolute errors: Relative errors:
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Figure 2. n=>5
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Figure 3. n =10

Example 3
t 1
2
u(z,t) = e ta? — §t3$2 + //xztzesu(y, s)dyds.
0 -1

Absolute errors:
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Figure 4. n=>5 n=3=8

The relative errors for n = 6 i are given in the Table 1. Dependence of
average relative error of a number of basic functions is shown in Table 2. a).
Example 4 In the case of the equation

2 5 .
u(z,t) = e®t? — Zt32% +

1
3 /e_yx2u(y, s)dyds
1

o

we get the following relative errors which are presented in Table 2,b).
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Table 1.
t\z +0,2 +0,6 +1,0
0,0 .9685e-6 .9625e-6 .9619e-6
0,2 .2146e-6 .2093e-6 .2089%e-6
0,4 .1208e-6 .1247e-6 .1250e-6
0,6 .1266e-6 .1270e-6 .1273e-6
0,8 .3432e-6 .3480e-6 .3487e-6
1 .2300e-5 .2315e-5 .2317e-5
Table 2.
a) b)
n Relative errors n Relative errors
4 .337e-3 4 .506e-2
5 .163e-4 5 .549e-3
6 .665e-6 6 .615e-5
7 .328e-7 7 .344e-8

Remark 3.1. For n > 11 algorithm is weakly stable and the absolute errors
are increasing with n. This conclusion follows from the quadrature formula
and a number of the system of algebraic equations.

4. PROJECTION METHOD

Consider the following integral equation
¢
un@) = Fulo.)+ [ [ bne iy unty,)yds, (41)
M

0

where

fa(z,t) = Z finxan(z,t),  kn(z,t,y,8) = Z Zkik,leik(xat)le(yas)

i,k=1 ik=1 j=1

and

Xik (T, t) = @i(x)r (), (4.2)
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where {¢;},{1r} — orthonormal basis in the spaces L?(M) and L?[0,T],
respectively,

T

fir =(f, xir) //f z, t)xix (z, t)dzdt,
oM (4.3)

T £
kzk,]l - k Xlk,]l // //k z, t; 'Y, S le(y7 )dyds] Xlk(x t)dl‘dt
oM O

Putting this expressions in (4.1) we get

= i (f@k+ Z kzkjl//Xgl (y, 8)un(y, )dyds)xzk(x t). (4.4)

i,k=1 7,=1

Introducing the notation

Czk fzk + Z kzk]l//X]l Y,s un y: )dde (45)

Ji.l=1

we get the approximate solution of equation (4.1) in the form

n
Z cikXik (z,1). (4.6)

i,k=1

Putting (4.6) into (4.5) we obtain the following system of linear Volterra
integral equations

in(®) = it > / / 19| Y cral6xoalvs o) duds,  (47)

Jl=1 p,q 1
for calculating the functions ¢ (i, k = 1,2,...,n). Putting (4.2) into (4.7) we
have

t

cnl®) =t > ka3 [ [ entsres rnts)ontvyen(o)duds.

ij=1 P,q= 10 M

On virtue the orthonormality of the system (p,) in L?(M), i.e.

/cpf,(y)dy =1, /w(y)sop(y) =0, j#bp,

M M
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we get the special system of linear Volterra integral equations

n ¢
ca®)=fut Y b [ n(hb G (E=12 ). (49
l,p,q=1 0
Theorem 4.1. Let {¢;} be orthonormal complete system in L?(M) and {¢;}
be orthogonal complete system in L*>[0.T]. If f € L*(D) and k € L*(12), then
system (4.8) is uniquely solvable in the space L? [O.T] and the sequence defined

by formula (4.6) converges to unique solution of equation (2.1) in the space
L%(D).

Proof. We rewrite integral equation (4.1) rewrite in the operator form
Un = fn + Kpug,

where K, is the Volterra-Fredholm operator of form (2.3) determined by the
kernel k,,. Then we get

Up —u = fn— [+ (K — K)u, + K(up — u).
From paper [4] we obtain
Un_u:(I_K)_l[(fn_f)+(Kn_K)un]

and
ot =l < 1= K[ = Dl + [ = Kl ]

The convergence follows from Fourier series theory because

o= fll2, — 0,
n—00

[|kn, — k|l2 — 0.
n—oo
|
5. GALERKIN-FOURIER METHOD

In this section we propose the following algorithm for equation (2.1)

(o) = 3 a;()¢(2) (51)
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for (z,t) € D,D = M x [0,T], where {¢,} is an orthonormal and complete
system in L?(M); {a;} is a solution for a system of Volterra integral equations

n t
:fj(t)+2/k,ktsak Yds, j=1,2,...,n, (5.2)
0

k=1

here

fi@t) = /f(a:,t)cpj(:c)dx, ji=12,...,n,

M

kjk(t7s) = //k(x7t7y78)(pj(x)(pk(y)dyd$7 k7.7 =12,...,n.

Lemma 5.1. If f € L*(D) and k € L?(), then function defined by (5.1) is
a unique solution of equation

t
un(@,) = fulo,)+ [ [ oty 5)unly, )duds, (5.3)
0 M
in the space, L*(D), where

fn(xat) = ka(t)(pk(w)a J) t 'Y, 8 sz]k t B ()0_] (y) (54)
k=1

Jj=1k=1

Proof. Putting (5.4) in (5.3) we get
z,t) =Y up(t)pr(), (5.5)
k=1

where
n
c(t) = fr(t) +Z//k1k (t,8)pj(x)un(y,s)dyds, k=1,2,...,n. (5.6)
j=1 0

Next, due to orthonormality of the system {¢} we get the following system
of linear Volterra integral equations

n t
i (8) :fk(t)+z/k,k (t,8)u;(s)ds, k=1,2,..cn, (5.7
0

=1
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which has a unique solution {u;},j = 1,2,...,nin L?[0,T] such that u;(t) =
a;(t) for every j =1,2,...,n. B

Theorem 5.1. If f € L?(D) and k € L?(2), then a sequence {u,} defined by
formula (5.1) is convergent in L?(D) to a unique solution of equation (2.1)
and an error estimate

Cc
n < —F —Jn 671
i~ wlle < =5 [Ilf = fulla + 1l

holds, here
c=T=K),  6n = [lkn = Kl

Proof is similar as in Theorem 4.1.

6. CONCLUSIONS

The mathematical model of an epidemic was reduced to integral equation of
the mixed type. In this paper we proposed iterative and projection methods
for solving linear integral equations. Presented methods lead to a system of
linear algebraic equations or a system of Volterra integral equations.
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Projekciniai metodai integralinéms lygtims epidemiologijoje
L. Hacia

Pateikiami skaitiniai metodai miSrioms integralinéms lygtims. Nagrinéjamos lygtys modeli-
uoja epidemijy dinamika erdvéje ir laike. Apzvelgta tokiy lyg¢iy bendroji teorija, ji panau-
dota projekciniuose metoduose. Projekciniai metodai leidzia suvesti uzdavinj j algebriniy
lyg¢iy sistema arba j Volteros integralines lygtis. Nagrinéjami metodai iliustruojami skai-
tiniais pavyzdziais.



