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ABSTRACT

In various fields of science and technology it is often necessary to solve inverse problems,
where from measurements of state of the system or process it is required to determine
a certain typesetting of the causal characteristics. It is known that infringement of the
natural causal relationships can entail incorrectness of the mathematical stating of inverse
problems. Therefore the development of efficient methods for solving such problems al-
lows one to considerably simplify experimental research and to increase the accuracy and
reliability of the obtained results due to certain complication of algorithms for processing
the experimental data. The problem of determination of thermal diffusivity coefficients
considering other known characteristics of heat transport process is among incorrect in-
verse problems. These inverse problems for coefficients are quite difficult even in the case
of homogeneous media. In this paper it is supposed that the heat transport equation is
non-homogeneous and an algorithm for determination of the thermal diffusivity coefficients
for both the media is proposed. At the first step, the non-homogeneous inverse problem
with piecewise-constant function of non-homogeneity is solved. For this auxiliary inverse
problem, the proposed method allows one to determine both the coefficients of thermal
diffusivity and to restore the heat transport process without any additional information,
i.e. the algorithm also solves the direct problem. Then the initial non-homogeneous inverse
problem with a piecewise-continuous function of non-homogeneity is solved. The proposed
method reduces the non-homogeneous inverse problem for coefficients to a set of two tran-
scendent algebraic equations. Finally, the analytical solution to direct problem is obtained
using Green’s function.
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1. INTRODUCTION

The problem of determination of the thermal diffusivity coefficient consid-
ering other characteristics of heat transport process is among the incorrect
inverse problems. This inverse problem for coefficients are quite difficult even
in case of homogeneous medium. The "Transient Hot — Strip Method" (THS
Method), offered in the paper [2], is a well-known one for determination of
the coefficient of thermal diffusivity and the specific heat in homogeneous me-
dia, assuming other conditions of heat transport process are given. In works
[3; 5] numerical variants of THS Method for various boundary conditions are
investigated. In work [4] a numerical method (finite element method) for the
analysis of two — layer medium is generalized. In our paper [1], distinguished
from the mentioned works [2; 3; 5], it was assumed that the medium is two —
layered in the direction perpendicular to the "Hot — Strip" surface and a qual-
itative new mathematical method is offered. It allows one to determine both
the coefficients of thermal diffusivity for measurements of the temperature in
some suitable from the experiment point of view points. In the first part of
this paper we briefly explain the results of our work [1], in the second part of
the paper the new technique is developed. The proposed method reduces the
non-homogeneous inverse problem for coefficients to a set of two transcendent
algebraic equations without additional experimental information.

2. THE STATEMENT OF THE HOMOGENEOUS INVERSE
PROBLEM

Geometrically this two — layer domain looks as follows

k, = const.

k, = const.

<V

Figure 1.
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The problem is formulated mathematically as follows:

C(y)ut(m,y,t) = kz(y) (umx(xayat) + Uyy(.’L’,y,t)), (21)
u‘ = h = const, (2.2)
y=0
O<z<lI
uy‘ = T=0 (2.3)
y=0 0, I<z<oo,
uy|y:H =0, (2.4)
. =o. 2.
u - (2.5)

To the above conditions there are added those of conjugation along the
boundary y = Hy of both media:

u‘ = u‘ ) (2.6)
y=Ho—0 y=Ho+0
k ‘ =k ‘ . 2.7
S A 27
Here the specific heat c(y) per volume unit is given by
c1, 0<y< Hy,
cy) =
c2, Ho<y<H,
and heat conductivity coefficient
k1, 0<y< Hy,
k(y) =
ke, Ho<y<H.
k
The purpose of the paper is to define the coefficient a?(y) = %, that is to
c\y

find two numerical values — a3 and a3.

3. THE SOLUTION OF HOMOGENEOUS INVERSE PROBLEM
USING INTEGRAL LAPLACE’S TRANSFORMATION

We begin to solve the stated problem rewriting the boundary condition (2.5)
in the following equivalent form:

(- )ue(emt)][ =0,



220 S. Guseinov, A. Buikis

which, in the end, can be written as

T

/(5’3 — §)ugedé = u(z,n,t) — u(0,n,1). (3.1)

0

In a similar way the boundary condition (2.3) can be transformed:

0<z<l,

x> 1. (3-2)

Yy
/ (y = n) iy = u(&,y,t) — u(£,0,1) + {; b
0 )

Now we multiply (3.1) by (y—n) and integrate it over 7 and similarly, multiply-
ing (3.2) by (x — &) and integrating it over £ and summing up both equalities,
we obtain

x

I

E,n, t)
(n)

Y 1,.2
—sx%yq, 0<z<lI,
- ,0,t) — u(0,1,t)|d 2
/(y ) [ute,1,0) = (0,1, n+{0’ e
0

dTI - u(gaya ) + U(ﬁ, Oat)] dé- =

o\@

Assuming time ¢ to be fixed, we rewrite the last equality in the following short
form:

z 12
[@-9nEn0de= ny0+ {Of”” USTER e
0
here
f1(£7y7t) = ‘f(y - n)%(z),t)dn - u(£7y7t) + u(§707t)7
f2('r7y7t) j(y 77)[ (1'7777t) - U(Oﬂht)] dT}

Expression (3.3) is an integro-differential Volterra type equation, since
f1(&,y,t) contains both the function u(&,n,t) and its derivative with respect
to t, while function fs(z,y,t) contains u(x,n,t) under the integration sign.
We will solve equation (3.3) using integral Laplace’s transform:

00 o+ico

i) = [g@erin, g =5 [ iweap

e
0 o—i00
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After simple transformations we finally receive
y 9 y
Pa 77;
/ dﬂ—U(Pay; )+U(p,0t :p2/y UU(PN% )
0 0

Yy e—pl l2 9 _pl
—p/(y—n)u(O,n,t)dn+yq7 (Ep +lp+1—e ) (3.4)
0

The obtained equation presents an integro-differential Volterra II kind equa-
tion. It is well known that the solution of (3.4) exists and it is unique. This
solution is expressed via a resolvent, with not only a?(y) being found but also

u(z,y,t).

4. THE SOLUTION OF HOMOGENEOUS INVERSE PROB-
LEM HAVING INFORMATION ABOUT TEMPERATURE AT
SOME POINTS

In this Section we will narrow down our task aiming only at finding a? and a2.
With this purpose in mind, we return to (3.1) and (3.2), substituting z = I,

and n =g € [0, Hp| into (3.1) and £ =1 and y = yo € [Ho, H] into (3.2). We
thus obtain:

(l - g)“E&(ga 770,7')d~f = U(l:TIO,T) - U(Oa Mo, T)a (41)

(Yo — My, (1,0, 7)dn = u(l,yo,7) — u(l,0,7) — yoq. (4.2)

Ot O~ _

Note that problem (4.1), (4.2) is ill posed: small variations in the right
sides correspond to arbitrarily large variations in the solution. For solving
such problems, a special regularization method was developed. Let us suppose
that, using the regularization method, we have found solutions of (4.1) as

“EE(EJ?O, )_zl (§7l7u(l Mo, T )7u(07n07T)) (43)

and of (4.2) as

uTlTl(l: n,T ) - Zé )(777 yO:u(lay07T)au(l707T))' (44)

Then, integrating the initial equation (2.1) over time and setting & = | we
obtain

T
u(l,m0, T / uge(1,m0,7) + Uny(l, 10, 7)] dr.
0
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From here it follows, by virtue of (4.3) and (4.4), that
2 U(l, o, T) —h

1

[z£0) (l7 l7 U(l, Tlo, 7—)7 U(O, Mo, T)) + Zg)) (7707 Yo, u(la Yo, T)a U(l, 07 7-))] dr

(4.5)
This means that, with temperature values at the points (x = I,y = 79) and
(x = 0,y = no) being known for some time interval 7 € [0,77], from (4.3) we
can reconstruct the function wge (&, 70, 7). Correspondingly, from given tem-
perature at the points (z = [,y = yo) and (z =,y = 0) function wuy,(l,n,7)
can be reconstructed. To find a3, we will set: £ = [ and n = m € [Ho, H].
Then, instead of (4.5) we will have

a

T
u(l,my, T / [uge (1,1, 7) + wgn (L, 7)) dr (4.6)
0

and instead of (4.1)

l
/ Ugg E: m,T )dé- = u(lﬂhﬂ') - U(Oﬂhﬂ')-
0

We denote the solution of this last equation as wug (€, m,7) =
zgl) & Lu(l,m,7),u(0,m1,7)). Next, if the solution of (4.4) at the point n = 7,
is denoted by zz(,l), that is upy (I, 1, 7) = zél)(nl,yo,u(l,yo,T),u(l,O,T)), then
(4.6) can be rewritten as

u(l;nlaT) —h

[Zgl)(la l; u(la m, 7—)7 ’LL(O, m, T)) + zél) (771;90; u(la Yo, T), u(la 0; T))] dr

@ =

ot g

Then it follows that solutions of integral equations zzw,i =1,2;5 =0,1, de-
pend on the temperatures measured in six (z,y) points only: {0,70}, {0,771},
{1,0}, {I,m0}, {l,m}, {l,y0}; we are reminded, though, that the parameters
no € [0, Ho,|,m € [Ho,H] and yg € [Ho, H] from the corresponding segments
might be chosen arbitrarily in the manner that is convenient from the experi-
mental point of view. In particular, the number of such points can be reduced
to four if we set o = 0, = yo = H.

5. THE SOLUTION OF INHOMOGENEOUS INVERSE PROB-
LEM USING GREEN’S FUNCTION

In this paper, distinguished from our paper [1], it is supposed that considered
problem is non-uniform. Besides, in this problem there are no data on tem-



Inverse heat transport problems for coefficients in two-layer domains 223

perature in points of the considered area. So, we have the following problem:

c®)un(2,9,8) = k() [taa (,9,) + 900 (@,.0)] + flzy)  (5.1)
0<z<+00, 0<y<H=Hy+H, t>0,

P fﬁl’, if 0<y<H0,
flz,y) = (@) . (5.2)
0, it Hyp<y<H,
u| =h=const, 0<z<oo, 0<y<H,
=0
uy‘ 0:0, 0<z<oo, t>0, (5.3)
y:
uy‘ =0, 0<z<o0, t>0,
y=H
Ug 0:0, O<y< H, t>0,
o o
y:H —0 y:H0+0
k =k .
Hy y=Ho—0 2ty y=Ho+0

1
In addition it is supposed, that the following function is known } of u(z,0,t)dxr =

T(t). Let’s denote 6(z,y,t) = u(z,y,t) — h. Then we receive the following
equivalent problem:

04(,y,t) = a*(Y) [6aa(x,y, 1) + Oyy (2,9, 1)] + f(2,y), (5.4)
where
f(=z,y)
flz,y) = ) 5.5
(@) = L35 (5.5
a‘t_ozo, 0<z <400, 0<y<H, (5.6)
0,,‘ =0, 0<z<+o0, t>0, (5.7)
y:
Hy‘ _H:0, 0<z<+o00, t>0, (5.8)
0. 0:0, O<y<H, t>0, (5.9)
=
0‘ - ‘ , 5.10
y=Ho—0 " ly=Ho+0 (5.10)

k16 = k0 ‘
Y Hy—0 Y y:H0+07

To(t) = % / 8(,0, t)dz = T(t) — h. (5.12)
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First we assume to have the homogeneous equation and we formally apply to
(5.4) — (5.11) Fourier cosine-transform on z:

= a*(y) [0,y — X0],

o~

Iy, 1) = e ONIY (N y,1),
Vt=a2(y Vg, O0<y<H, t>0,
V‘ —0,

t=0
Vy‘yzo =0, V| _, =0

V(A Ho = 0,t) =V (A, Ho + O,t)e(“?*ag)AZt’
k1Vy (A, Ho — 0,1) = kaVy (A, Ho + 0, 8)e(t1— 92",

This problem is solved by the method of separation of variables:

V(A y,t) = Y(y)e® @V (t)

4

Wn
cos —y
ay .
——, if 0<wy< Hy,
Wn
cos — Hj
ai

cos &(H —y)
e if Hy<y<H
cos —(H — Hy)
\ ap

T () = Dye@ata® @A)t

where w = w,, are solutions of the transcendental equation

ciaq tan iH() = caap tan i(H() — H), (513)
ay az
H ~
S e(mh(X,n)Y; (n)dn H
2
D, =2 s IVl = [ cnyZaan
A J

After application of Fourier inverse cosine-transform we receive

oo H 00 —wit
e0.0) = 5= [ 6 [ e[ + 3 Tt Vato)]
o 0 n=1

@-&  @te?
X [e 40>t +e 4a’t ]dn,
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We denote through G(a(y),c(n); z,y,t; €, n, 7) Green’s function of the problem
(2.1), (5.4) — (5.11), where 0 < 7 < t. Then

t oo H
u(z,y,1) = / / / Glaly), c(n); 2y, € m, 7) (€, m)drdédn,
0 0 O

where

@9 (@
e 4a?(t—7) +e 4a?(t — 1)

2a(y)/w(t — 1)

G(a(y),c(n);z,y,t;§,m, 1) = c(n)

1 © e—wi(t—r)
[ * 2 T et

and

||Yv0||2 = Cl.H() + C2(H - Ho),
H

1,2 = / e(n) Y2 )y =

0

ClH() CQ(H — H())
Wn + 5 Wn :
2cos? —H, 2cos>? —(H — Hy)
ap as

From (5.5) it follows that

et R s |
, Te WW)(t-7) L, W@2@)(—7)
Vot = g T Hﬁw/ / T F(&)ddr
(z = (z +&)?
c1a4 Te 4’y t—T) e 4a2(y)(t—T)
2 /maly |Y0||2/ 0/ N gy, t-7)f(E)dEd .
(5.14)
Here

w
o tan — Hy

=~ a —w2(t—7
gyt —71)=> mlfn(y)e n(t=)

n=1
and it depends from a; and as. In the beginning we assume, that the function
f(z,y) in (5.5) is constant, i.e.

f(.’L') =f0, if 0 <y < Hy,
f(z,y) = .
0, if Hy<y<H.
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Then we have

¢
c1Ho fo

0(x,y,t) = AR t+cla1f0/§(y,7)d7.
0

Fixing the moment of time, we receive

c1Ho fo

||YE)||2 to + clalfog(al,a2,t0) = T(to) —h, (515)

where
[es} tan — HO

a15a2;t0 E

[1 —e ¥ to]
1 w3 ||Yn ||2 coS —Ho
a1

or in another way
to

g(ai,az,t0) = /g(O,T)dT.

0

The equality (5.15) is the first transcendental equation for definition a; and
az. The second transcendental equation for definition also can be received
from the second condition of conjugation (2.7):

W
oo tan? HO )
cra1Hy Z n”Y ”2 [1 - e_w"t] = —CQG,Q(H — Ho)

n=1
s tan %HO tan %(H — Hy) ]
x 1 2 1—e“nt]. (5.16)
;::1 w2 ||Ya[? [ }

So, coefficients a; and a2 can be found from the transcendental equations
(5.15) and (5.16). Initial function of heat conductivity is defined in the field
of {0 <z < o0, 0<y< H,t>0} by following formula:

¢
c1Ho fo

u(z,y,t) = h+ AL t+cla1f00/g(y,7)d7.

In a case when function f(x,y) is not constant we shall receive, similarly

to

00 B 2
b/o/ 1+g(r erf (Qi:/lF)+erf (;al\;__)]f(.f) dédr = %[T(to)—h];
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where
Wn
tan — H,
a 1Yall2 e 0
R
0 ;71 wy||Yal|? cos —Hp
ai
d erf (2) 2 Feadais th integral
and erf (2) = —= [e a is the error integral.
VT o

Next we transform (5.17) by using the following formula

n

1 1 1 2 2
——erf (az)de = ————erf (az) + —————— Z(—l)kef‘1 e
/ g2l 2ng®" 2any/7T(n + %) k=1

1 —1)" 2n
% F(n k4 §)a2kx2k72n*1 + %eﬁ (azx)
2

oo
where I'(z) = [ A*~'e~*d)\ is Gamma function. Then we receive
0

to

//[erf (zij\/lF + erf(Qlal_\/i__)]g(T)f(f)dﬁdT - % [h . T(to)].
00

In this equality left and right parts are known if functions f(z) and T'(x) are
known. And also, the left part contains unknown parameters a; and as. So,
for the concrete given f(xz), this equation is also the transcendental equation
for definition a; and ay. The second transcendental equation was found in the
form of (5.16).

6. CONCLUSION

Thereby we have reduced the non-homogeneous inverse problem for coeffi-
cients to a set of two transcendent algebraic equations. Finally, the analytical
solution of the direct problem can be obtained using Green’s function.
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Atvirkstiniai Silumos laidumo uZdaviniai dvisluoksnése srityse ir juy
sprendimo metodai

S. Guseinov, A. Buikis

Ivairiose mokslo ir technologijos srityse daznai tenka spresti atvirks§tinius uzdavinius, kada
remiantis sistemos ar proceso busenos parametry matavimais reikia nustatyti prieZastines
charakteristikas. Yra zinoma, kad naturaliy priezastiniy priklausomybiy nepaisymas gali
nulemti neteisinga atvirkstinio uzdavinio matematine formuluote. Todél efektyvus tokiy
uzdaviniy sprendimo metodai leis zymiai supaprastinti eksperimentinius tyrimus, padidin-
ti gaunamy rezultaty tiksluma ir patikimuma, jeigu bus pritaikyti tam tikri sudétingesni
eksperimentiniy rezultaty apdorojimo budai. Difuzijos koeficienty nustatymas naudojant
kitas zinomas §ilumos laidumo proceso charakteristikas priklauso nekorektisky uzdaviniy
kategorijai. Atvirkstiniai uzdaviniai koeficientams yra sudétingi net ir homogeninése terpése.
Siame darbe daroma prielaida, kad terpé nehomogeniska, ir pasiiilytas algoritmas difuzijos
koeficienty nustatymui tokiu atveju. Pirmajame etape sumazinamas nehomogeninis atvirks-
tinis uzdavinys, laikant, kad nehomogeniskumas apraSomas dalimis pastoviomis funkcijomis.
Siam pagalbiniam atvirkStiniam uzdaviniui siulomas metodas leidzia apibrézti abu Silumos
difuzijos koeficientus ir atkurti Silumos laidumo proceso eiga be papildomos informacijos,
t.y., algoritmas sprendzia taip pat ir tiesioginj uzdavinj. Po to yra sprendziamas atvirks-
tinis pradinis uzdavinys esant dalimis tolydziai nehomogeniskuma apraSanciai funkcijai.
Siulomas metodas redukuoja nehomogeninj atvirkstinj uzdavinj j dviejy transcendentiniy
lyg¢iy sprendima. Taip pat yra gautas tiesioginio uzdavinio analizinis sprendinys, taikant
Gryno formule.



