MATHEMATICAL MODELLING AND ANALYSIS
VoLuME 7 NuMBER 2, 2002, paGES 207-216
© 2002 Technika

MONOTONE ECONOMICAL SCHEMES FOR
QUASILINEAR PARABOLIC EQUATIONS

N.V. DZENISENKO !, A.P. MATUS 2 and P.P. MATUS 3
! Belarusian State Economic University
26 Partyzanskii Avenue, 220672, Minsk-70, Belarus

2 ROSTEC Inc
8295 County Road 10, Corcoran, MN 55357 USA

E-mail: aleh@rostec.net

3 Institute of Mathematics of NAS of Belarus
11 Surganov Str., 220072 Minsk, Belarus
E-mail: matus@im.bas-net.by

Received September 17, 2002

ABSTRACT

In order to approximate a multidimensional quasilinear parabolic equation with unlimited
nonlinearity the economical vector-additive scheme is constructed. It is shown that its
solution satisfies the maximum principle and, hence, the scheme is monotone. The proof
is based on the equivalence of the vector-additive scheme and the scheme of summarized
approximation (locally one-dimensional scheme). The a priori estimates of the difference
solution in the uniform norm are obtained.
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1. INTRODUCTION

In order to obtain an approximate solution of multidimensional nonstationary
problems of mathematical physics the different classes of additive schemes
(operator-splitting schemes) are widely used [4; 5]. In a number of papers
[1; 7], the vector-additive schemes (multicomponent schemes of alternating
directions) are considered. These schemes are of full approximation.

In view of stability, the most definite results were obtained for linear prob-
lems by the study of the difference schemes in Hilbert grid spaces. It also
concerns the stability and convergence of additive operator-difference schemes
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of full approximation. For many problems the issue of the scheme correctness
in the uniform norm is fundamental (in the Banach grid space Lo,). As an
example, we may note the problems with unlimited nonlinearity. Stability in
the grid norm C' for the simplest vector-additive schemes approximating linear
multidimensional parabolic equations were considered in the works [2; 6; 9].
The proof is based on the use of the maximum principle and the equivalence of
the vector-additive schemes and the schemes of summarized approximation.
Difference schemes satisfying the maximum principle are called monotone. It
is very important to save the monotonicity property of difference schemes for
numerical solution of applied problems with the aid of a computer.

The problems with unlimited nonlinearity are characterized by the fact that
specific properties imposed on solution-dependent coeflicients of the equation
are satisfied only in a range of values of the exact solution or in its small
neighborhood. Thus, for these properties to hold true for coefficients of the
difference scheme, it is necessary to prove that the approximate solution lies
in the range of values of the exact solution. This circumstance requires the
study of the difference solution properties in the norm C.

In this paper, monotonicity of the economical vector-additive scheme of
full approximation for multidimensional quasilinear parabolic equations with
nonlinearities grown with no limit is proved. To obtain the a priori estimates
in the norm C, the maximum principle and the equivalence of the multi-
component method of alternating directions and the schemes of summarized
approximation are used.

2. MAXIMUM PRINCIPLE AND ITS COROLLARIES

In this section, we give the maximum principle and its corollaries, which will
be used to prove that the difference scheme solution lies in the range of values
of the exact solution or in its small neighborhood. We will also obtain the
a priori estimates for solutions of the difference schemes approximating the
nonlinear parabolic equations with nonlinearities grown with no limit.

We use the following canonical form [4] of a difference scheme:

A@y(x) = Y B(@,y(&) + F(z), © € wn, y(@) = p(x), & €, (2.1)
§eEM! (z)

where A(z), B(z,§), F(z), p(x) are given grid functions, M'(z) = M(z)\{z},
M(z) is a stencil of the scheme, y(z) is a discrete solution, wy, is a set of the
boundary nodes. Let us formulate the maximum principle in the following
way.

Theorem 2.1 [4]. Let the following conditions of the coefficients positivity
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be satisfied for equation (2.1):

A(z) >0, B(z,€) >0, D(z) = A(z) — Z B(z,£) >0, z € wp, (2.2)
EEM! ()

and the following inequalities be valid:
F(z) >0, © € wp, pu(r) >0, x € .
Then the function y(z) is nonnegative, i.e., y(z) > 0,z € wp. If
F(z) <0(z € wn), m(z) <0(z € ),
then y(x) <0 for all x € @y,
Corollary 2.1. Let conditions (2.2) be satisfied and
F(z) > uy, ¢ € wp, p(x) > uy, T € v, ug = const > 0, (2.3)

0<D<I1. (2.4)
Then the following inequality is valid:
y(z) > w1, £ € O, @h = whUh- (2.5)

Proof. 1Infact, substituting y = §+u; into equation (2.1), we get the problem
for g

A@)j@) = Y B@,8§() + F(z), z € wn, §(x) = fi(2), & € h- (2.6)
EEM (z)

In the strength of conditions (2.2) — (2.4),
F(z)=F(x) —u1D(z) > (1—D)u; >0, x€ wp, (2.7)

fi(z) = p(x) —u1 >0, € (2.8)

Applying Theorem 2.1 to problem (2.7), (2.8) we find that g(z) > 0 for all
z € @p. Hence, y =9 +u; >0. A

Let us define the grid norms

I lle = max]-],
I-llo, = max]-|, [|-[lo = max|-|.
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Corollary 2.2 [4]. Let the stronger constraints on the coeflicients be valid:

A(z) >0, B(z,€) >0, D(z) = A(z) — Z B(z,€) >0, € wy. (2.9)
geM!(z)

Then for the solution of problem (2.1) the following estimate is true:

lylle < max{]lyllc,, [|F/Dllc}- (2.10)

3. STATEMENT OF THE DIFFERENTIAL PROBLEM

In this section, we formulate the initial boundary-value problem for the mul-
tidimensional quasilinear parabolic equation and indicate the intrinsic prop-
erties of problems with unlimited nonlinearity.

In the cylindrical domain Qr = {(z,t) : 2 € Q, 0 <t < T}, z =
(T1,%2,...,2p), Q@ ={0< 24 <o, a=1,2,...,p}, @ = QU 1, where 7 is
the boundary, we consider the first boundary-value problem for p-dimensional
heat conduction equation

ou = O du
L = a_ ka(xatau)— +f($at)7 f(a:,t) 2 07 (.Z',t) € Q ) (31)
ot agl 6:1:a( 8;ca) T

u(x,0) = up(z), = € Q, u(x,t) = p(z,t), z €, t>0. (3.2)

Let us define the range of values of the exact solution D, by the inequalities

t
0 < uy < u(w,t) < max{max||ullc, , [[uollow) } +/0 [1fE)llc@)ydE < uz,
(z,t) € Qr, f(z,t) >0.

We set up a neighborhood of the exact solution Dy (which might be quite
small):

0
{1§a§u2+r, T:TTH(?_{ —)0f0r7—>0}.

lecen

The intrinsic feature of problems with unlimited nonlinearity is that the ba-
sic properties (positiveness, boundedness, etc.) of the nonlinear coefficients
ko(z,t,u), a=1,2,...,p are not satisfied for all the values u as a parame-
ter, but only for u in the range of values of the exact solution D,, or its small
neighborhood. Further we assume that

0< ks <kglz,t,u) <ks, a=1,2,...,p, (x,t)€Qr, u€ Dz (3.3)
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For example, for problems of radiant heat conductivity the exponential non-
linearity is typical: kq(z,t,u) =u’, a=1,2,...,p, o = const. The posi-
tivity condition (3.3) is fulfilled for these coefficients provided that v > 0 only.
In the other example, ky(z,t,u) = u — 0o, 04 = const, a =1,2,...,p,
this condition is satisfied for u > o,.

4. DIFFERENCE SCHEME

In this section, on the basis of the stuff given in the papers [1; 2; 7; 8], the
economical non-iterative vector-additive scheme of full approximation with
different numerical representations of the initial data is constructed.

In the rectangle Q we introduce the uniform grid @ = @y, X @,

wr={th=n1, n=0,1,...}, ©n=wrUp,
where a set of the inner nodes is defined by

wp ={z; = (mgil),mg@, ... ,xif”)), 2le) =ighg, ia=1,2,..., Ny —1,
haNaletJ a=1727"',p}7

and v is a set of the boundary nodes. The following difference scheme ap-
proximates differential problem (3.1), (3.2) in @:

p
yie = Mg + Z Amym + @, (4.1)
m=2
. P
yar = M + Aoflo + Y Amym + &, (4.2)
m=3
p A
Ypt = Mig1 + Z AnGm + &, (4.3)
m=2
Yalym = mz,t), =€, te€uw, (4.4)

with two kinds of the initial data approximation:

(E — —TAg)yg = yg_l, a=23,...,p, 3/(1] = uy, (4.5)
Yo(2,0) =ug(z), a=1,2,...,p, T € wp. (4.6)
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Here the following notation has been used:

Yat = (ya(matn+1) - ya(xatn))/T = (Ja —Ya)/T, T € wh,

1
Aoy = (Aa¥Yz.)za = h_(aa(+1a)y:ca - @aYz,);
(62

v(£l,) = v(mgil), ... ,;U((jil_l), a:((j“) + hg, mgj‘r'fl), ... ,a;gff’)),
Yoo = ( =y —y(-1a))/ha;

y(+1la) = y)/ha, Yz,
aq = al = 0.5(ka (2, tn, y7") + ka(x(—la),tn,yln(fla))),

Aa:’)a = (aayAiQ)za; Aa?ja = (&agia)zaa (;7 = f(mai)

The numerical solution can be found from difference schemes (4.1) — (4.6)
in the following way. According to the given boundary conditions (4.4) and
initial data (4.5) or (4.6) the solution at the first time layer y' = yi = y;(z,7)
can be computed using (4.1) and the formula of the scalar sweep method with
respect to variable z; only. Further, using the auxiliary values 3, ... ,yll) found
and formulas (4.2) — (4.6), we compute y? = y? = y;(x,27) at the second time
layer. Then the procedure stated above is repeated. It is essential that in all
the equations for determining the pattern functionals aq(z,t,v1), (z,t) € w,
it is used the desired grid solution y = y; only.

5. THE EQUIVALENCE OF VECTOR-ADDITIVE AND LO-
CALLY ONE-DIMENSIONAL SCHEMES

In this section, we will prove the equivalence of the vector-additive schemes
and the schemes of summarized approximation. For linear problems these
issues were discussed in papers [2; 3].

First of all, we consider difference scheme (4.1) — (4.4) with the initial data
approximation of (4.5) type. Subtracting in (4.1) — (4.3) two consecutive
equations, we get the following system of equations:

(ya - ya—l)t = T(Aaya)t7 a = 27 - D- (51)

Now we subtract equation (4.3) written in the previous time layer from equa-
tion (4.1) and obtain the formula

(yl - gp)t = T(Ayl)t + TP, V= U(t - T) = U(tn_l). (52)

Performing the numerical integration of the system of difference equations
(5.1), (5.2) and taking into account the initial data (4.5), we have the following
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system of algebraic equations:

Ya=VYasi _ gmyn 93 >0
T_ ail/a, A= 24,9,...,D, n-~2v, (53)
yrtt =y
A AT} (5.4)
Setting y5 = y™ 5, ..., Yp = g yPt' = ¢+, we obtain the classical

version of the method of summarized approximation. Hence, a vector-additive
difference scheme of the form (4.1) — (4.5) can be written as a locally one-
dimensional one.

Note that if we use the standard approximation of the initial data (4.6)
instead of formula (4.5), then we get by the numerical integration of system
(5.1), (5.2) the following system of difference equations instead of system (5.3),
(5.4):

MzAgngrcm a=23,....p, (5.5)
yrtt -y
S = ATy " 1, (5.6)

where C, is given by the formula

Cl(w) = - an(l'), Ca(x) = _AgUO(m)7 a = 2737" P, T E Wh-

6. MONOTONICITY AND THE A PRIORI ESTIMATES
In this section, we will prove the monotonicity of the vector-additive schemes

considered and obtain the a priori estimates in the norm C in the nonlinear
case. It should be noted that if y™ = yJ* € Dy, i. e.,

0<u <y(z,t) <us+r, (x,t) €, (6.1)

then by virtue of formula (3.3) and by the choice of the pattern functionals
G, @ = 1,p, we obtain the inequality

0< ki <aq(z,t,y) <k, (2,t)€w, y€D;. (6.2)
While investigating the properties of difference schemes for nonlinear problems

with unlimited nonlinearity, the most difficult issue is to prove very inequal-
ities (6.1) — (6.2). Using the maximum principle and its corollaries given in
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Section 2 we show that the approximate solution lies in the neighborhood of
the range of values of the exact solution (y™ € Dj).
We rewrite equations (5.3), (5.4) in their canonical form (2.1):

Anyn = é(az<+1a)yz(+la> talyl )+ FE, a=2p,  (6.3)
Ay =14 @y + o}, Fi=yia, a=Zp  (64)
AP = 5 @ity + i) H T, (69)

AP =14 (@, +ab), FP=yp+ 1ot (6.6)

h?
Note the initial data

y° = y(z,0) = y1(2,0) = uo()

and boundary condition

y($7t) = M(Z’,t), T € Yn

lie in the range of values of the exact solution Dy, i.e., the following inequalities
are valid:

0<u Sy(l)a ,U/(’Yh,t)SUQ, T EWL €W

Since y € D,, then by virtue of formula (3.3) the inequalities (6.2) are
satisfied for n = 0 and for all @ = 1,2,...,p: 0 < k1 < a% < ko. Hence,
the conditions of the coefficients positivity (2.2) for schemes (6.3), (6.4) are
satisfied for n = 0 provided that D% = 1. Estimate (2.10) and formula (6.3)
yield the following estimate:

lplle < llgp-ille < --- < llyille-

Moreover, Corollary 2.1 gives us the relationship: 0 < u; < yg < ug, i. e.,
y5 € Dg. Now let us consider the problem (6.5), (6.5), (4.4) when n = 0. As
A? >0, DY = 1 and ¢(z,t) > 0 for (x,t) € @, then by similar arguments,
using the maximum principle and its corollaries, we obtain the estimate

0<ur<yi, lly'lle <max{|lu'llc,ly’llc} +7lle'llc.

From the generalized quadrature right-rectangle formula we have the inequal-
ity

n t
37l Mo = [ 1 @llewde] <
k=1 0



Monotone economical schemes for quasilinear parabolic equations 215

Therefore, y} € Dg. Now let y' € Dy and inequalities (6.1), (6.2) be satisfied
for t = t,. Then for difference equations (6.3), (6.4) it is valid the positivity
conditions (2.2) for the coefficients:

AZ>0, Dr=Ar- > BMz,&) =1, a=1p.
geM’

On the basis of the maximum principle and its corollaries we obtain the fol-
lowing inequalities:

0<ur <y™ <ly"Hlo < max{ max ||u(w,#)l|c,, |luollc }
<t<tnt1

t+7
+ 3 7lle)lle < uz+r. (6.7)

t'=1
The latter estimate means that y®*! € Dy and
0<kr Saa($7t7y?+1)sk27 O[=1,2,...,p.

Then the arguments are repeated. As vector-additive scheme (4.1) — (4.5)
satisfies the maximum principle then it is monotone. Inequality (6.7) repre-
sents the a priori estimate of the difference scheme solution with respect to
the input data of the problem. Since the problem is nonlinear, estimate (6.7),
unfortunately, does not provide the classical stability of the difference scheme.
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Monotoninés ekonomigkos schemos kvazitiesinéms parabolinéms lyg-
tims

N.V. Dzenisenko, A.P. Matus, P.P. Matus

Siame straipsnyje pasiulytas ekonomiSkos vektoriskai adityvios schemos, aproksimuojancios
daugiamate kvazitiesine paraboline lygtj su negriezto tipo netiesiSkumu. [rodyta, kad Sios
lygties sprendinys tenkina maksimumo principa ir todél pasitlytoji schema yra monotoniné.
Irodymas yra pagrjstas vektori§kai-adityvios schemos ekvivalentiSkumu suminés aproksi-
macijos schemai, kuri yra lokaliai vienmaté schema. Gauti skaitinio sprendinio aprioriniai
jverCiai maksimumo normoje.



