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ABSTRACT

Several models of parameterization for the problem of free surface of the sessile liquid
drop with nonlocal integral condition of prescribed volume are considered. The paper aims
to obtain for every model specific algebraic connection among physical and geometrical
parameters of the problem and compare them. This connection allows to construct the
iterative process for the unknown radius of the drop with more simple boundary conditions.
The positiveness of Lagrange multiplier in the problem of constrained minimization as
well as uniqueness of positive meaning of the radius of the drop are proven in the paper.
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1. INTRODUCTION

The mathematical model of the sessile drop on the horizontal plane is consid-
ered. The general, the boundary curve of the sessile or pendant drop cannot
be represented by an explicit function, hence the parametric presentation of
the solution should be chosen. If the drop is not fixed on the plane by mean
of special treatment, the radius of the drop is unknown.

The aim of the paper is to investigate few types of parameterization of
the problem, obtaining an algebraic expression for the unknown radius of the
drop. It is shown in the paper, that the positive meaning for radius a is unique.
The connection received allows us to reduce the problem with nonlocal integral
condition to the equivalent problem with an algebraic condition for radius a.

Theoretical investigations for the problems of the free surface of the drop
widely were considered in the monograph [2]. Some numerical aspects of the
problem considered were investigated in the papers [4; 5; 6; 7]. Many of the
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problems for the drop are still under research interest [3].

2. ALGEBRAIC CONNECTION OF THE PARAMETERS FOR
DIFFERENTIAL PROBLEM

Let us use first the parametric presentation of the boundary curve of the drop:
u(s), r(s), s € [0,1], as it is provided in [4; 5].

For the symmetric sessile liquid drop of prescribed volume in the field of
gravity the problem of free surface can be presented as a constrained mini-
mization of the functional of total energy:

inf E(u(s),r(s)) = inf (Es(u(s),r(s))+Ep(u(s),r(s))

(u,r)€U (u,r)eU
—AV ((s),7(5) = Vo)), (2.1)

A = cosy}. (2.2)
uy®(1) + 7y (1)

E,(u,r), Es(u,r) are the gravitational and free surface energy respectively:
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us—wpg/r s)ds, —27w/r ) + 7% (s)ds,
0 0

(2.3)
where u(s) is a height the crest of the drop, r(s) — radius of the horizontal
section, o — surface tension coeflicient, g — constant of gravity, p — density of
the liquid material of the drop, A — Lagrange multiplier, Vj — quantity of the
liquid in the drop, v — contact (adhesion) angle, a — radius of the base of the
drop on the plane, K = pg/o. The total volume of the liquid in the drop is
given as nonlocal condition:

27r/r(s)u(s)r's(s)ds =Tb. (2.4)
0

The variation of the total energy functional provides the differential bound-
ary value problem for parametric equations
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with additional nonlocal condition (2.4) and boundary conditions (2.2).

Totally for this boundary value problem of two differential parametric equa-
tions of the second order six additional conditions are determined: four bound-
ary conditions, nonlocal condition of the total volume of the drop and the
condition for unknown radius r(1) = a, which could change depending on the
physical parameters of the model and treatment of the surface of the plane.

Obtaining an algebraic connection among physical and geometrical parame-
ters of the problem allows us to reduce the problem to equivalent one replacing
additional nonlocal integral condition by an algebraic one.

By integrating equation (2.5), as it was proposed in [6] and taking into
account conditions (2.2), (2.4), we obtain

1 1
o, ) u(s)r(s)r.ds — r(s)r.(s)ds =
(uls)2+(rls)2‘o+KO/ (s)r(s)ryd )\O/()s()d 0,
providing
G TN U0 B /1 (s)dr(s) =

Vut O+ (Juto o) T

By using boundary conditions, we get

A K
Za? +cosya— —Vy =0. (2.7)
2 2r

Tt follows from (2.7) that

——cosyi\/— cos?v+—Vo (2.8)

If we consider a overhanging drop (cosy > 0), the condition (2.8) provides
only one positive solution for a for any nonzero values of physical parameters
and the positive A. The positiveness of A will be shown later in this paper.

The condition (2.8) is the same, which satisfies the nonparametrical problem
of sessile drop. This model could be presented by more simple boundary value
problem for a nonlinear differential equation [2; 6]:

1d ;
@' (0) = 0, u(a ) 0, 11752() = cos 7, (2.9)

The limits of use of model (2.9) and the necessity to switch to the model (2.5),
(2.6), (2.4), (2.2) were provided in [4] for the problem with fixed radius a.
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3. UNIQUENESS OF POSITIVE SOLUTION OF THE PROBLEM

To prove the uniqueness of the positive solution of the problem we consider
type of parametrization of the drop model, which was proposed by in [1; 2]
in the shape of boundary value problem for three differential equations of the
first order:

du

= sin ¢, (3.1)
% = cos p, (3.2)
Z—i:Ku—%sincp—)\, (3.3)
with the boundary conditions
u(1) =0, r(0) =0, (1) = a, »(0) =0, (3.4)

and nonlocal condition of the volume of the drop:
1
27r/ru cos pds = Vg, (3.5)
0

where ¢ = @(s) is an angle between the tangent of the curve and the abscissa
axis, € [0, —7).

We show that connection (2.8) is the same for the problem (3.1) — (3.5).
By expressing of the unknown u from the equation (3.3)

and putting it to the nonlocal condition (3.5), we obtain:

1
d 1 K
/r(—(p + —sin<p+)\) cos pds = VO—,
ds r 27
0
1

1 1

K
/rcosgodgo—{—/singocosgods—i—/)\rcosqyds: V;)—_

T
0 0 0

By using the condition (3.2), we get

1 1 1
VoK
/rdsincp+/singodr+)\/7“dr: ;—,
w
0 0 0
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and, after simple computation,

1 1
2
. : . r(s) 1 _ VoK
r(s)smgp|0—/s1n<pdr+/smgodr+)\ 5 l, = o
0 0
A VoK
providing asin (1) + Sa? = —=—, where
2 27
m w
p(D)=pr=5+7 0<y< 3.
2 2
1 VoK
Then a? + 2~ sinp; a — R provides
A AT

1 . 1 . 2 WK
a:—Xsmcplj:\/(Xsm(pl) +)\0—7T

and, taking into account (3.6),

B

1 1
= —— == (—
a )\COS \/ )\COS Y B)

giving the same condition as (2.8).
The uniqueness of positive radius a we prove by the lemma.

205

(3.6)

(3.7)

Lemma 3.1. The Lagrange multiplier X is positive for physical and geomet-

rical parameters of the problem (3.1) - (3.5).

Let us consider the equation (3.3). According to the method of parametriza-
tion, ¢! < 0 along the boundary curve of the drop starting from ¢ = 0 to

- < <0
As at the point s = 0, ¢(0) = 0, we get
d_(p sin ¢

cos ppl,
dS s=0 !

s

:KUO—

—/\:KUO—
s=0

s=0
Then, taking into account the equation (3.2), we obtain

dy
ds

_KUO—)\

= <0
s=0 2

providing
A>Kug >0
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where ug is the top height of the drop. By acknowledging condition (3.8) we
may realize the only one positive value for a as it follows from (3.7).

As algebraic connection (3.7) is the same as (2.8), results of lemma could
be used for the problem (2.1), (2.2), (2.4) as well.

The obtained algebraic connection (3.7) and condition for A evaluation (3.8)
could be used for further investigation as well as construction of numerical
methods for the solution of problems considered as it was done for nonpara-
metrical models in [6; 7], where these conditions were used for the proof of
the existence and uniqueness of the solution of the problem.
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LaSo pavirSiaus parametriniy lygéiy sistemos sprendimas
R. éiupaila, M. Sapagovas

LaSo, gulinéio ant horizontalios plok§tumos, laisvo pavir§iaus formai nustatyti nagrinéjami
keli parametrizavimo modeliai. ] uzdavinio formuluote jtraukiama nelokali integraliné sa-
lyga. Straipsnyje ieSkoma algebrinés iSraiSkos, sujungiancios fizikinius ir geometrinius uz-
davinio parametrus. Si algebriné iSraiSka yra ta pati tiek dviejy antros eilés lygCiy sistemos
modeliui, tiek trijy pirmos eilés lygciy sistemos modeliui. Taip pat yra jrodomas Lagranzo
daugiklio teigiamumas bei teigiamos laSo pagrindo spindulio reik§més vienatinumas.



