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ABSTRACT

Two variants of applications of the Degenerate Matrix Method for solving problems with
PDE are considered. Solutions of the simple testing problem and of one more complicated
nonlinear problem with PDE of the fifth order are presented as examples.
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1. INTRODUCTION

Degenerate matrix methods (DM methods) appear to be very suitable and
efficient for numerical solution of initial value problems of Ordinary Differen-
tial Equations (ODE). It is especially noticeable if the nodes on the mold are
chosen as zeroes of certain classical orthogonal polynomials ensuring the non-
saturatedness of approximations of functions. Such methods for ODE were
discussed in [2; 3; 4; 5]. Here we will consider how DM methods can be
applied to Partial Differential Equations (PDE) accenting at first the cases
when nodes of the mold are distributed as zeroes of certain classical orthog-
onal polynomials, for example, Chebyshev polynomials of the second kind.
In Section 2 we will consider a general scheme of the method. In Section 3
we will compare the precise solution for some test problem with numerical
solutions obtained by means of proposed approximate methods. In Section 4
we will analyze the numerical solution obtained by means of DM methods for
sufficiently complicated nonlinear problem of PDE. This problem was given
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in [1].

2. GENERAL SCHEME OF APPLICATIONS OF DM METHODS
FOR PDE

In order to simplify the principal concepts of the DM methods for PDE we
consider the computing scheme for the following simplified problem:

% = A(t,x,u, %)% + B(t,a:,u, %), ulg=o = f(z), (2.1)
Gi (t.u, %)u:a =0, Gt g—Z) =0 (2.2)

where A, B,G1,G2 are given functions of their arguments. We propose two
variants for solving the problem (2.1) — (2.2).

Variant A. 1°. Let N+2nodesa =29 <z1 < ...<zy < zZyp1 =D
be given in the closed interval [a,b] which can be reduced by substitution
z =a+0.5(s +1)(b—a) to [-1,1] . Then for each zx, k =0,1,...,N + 1,
it is possible to determine uniquely s = (2zp —a — b)/(b — a) € [-1,1].
The choice of xj contains usually the interior nodes si,k = 1,2,...,N as
zeroes of classical orthogonal polynomials. In such way a nonsaturatedness of
approximations of functions with respect to z can be reached.

2°. The equation (2.1) with respect to z is contracted to interior nodes

Z1,...,2Nn. Then the vectors of derivatives
am om om
— —_— ey —— =1,2 2.
(8mmu(t,x1), 6mmu(t,x2), ,(%mu(t,x]v)) , m=12 (2.3)

are replaced by means of the matrices for derivatives according to the chosen
nodes in the closed interval [a, b] analogically as in the methods for ODE. We
denote

7 (m) om om om

U™ = (ax—mu(taxo);aw—mu(t,%);---,ax—mu(t,mNﬂ)) ; (2.4)
L. om

where m =0,1,2, U := Uw(o). These vectors have values of 6‘3:—’: in all chosen

nodes at the closed interval [a,b] as components and can be approximately
calculated by

Ulm = 0(AD)™, m =1,2. (2.5)

Here A, is the (IV + 2) x (IV + 2) matrix for derivatives according to nodes
Zo,T1,...,ZN+1 and elements ag ; of this matrix can be computed by the
simple formulas [3].

P (sk)
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were J,k=0,1,...,N+1, -1 =59 <51 <...<sny < sny1 = 1 are nodes
in the standard interval [—1,1] and

Q. k = 05(b —

(2.6)

N+1

pls) = ] (s - s0). (2.7

=0

The matrix A, is degenerate since it has the rank equal to N + 1. Replacing
by (2.5) all derivatives according to = both in the interior points z1, %2, . .., TN
of contracted equation (2.1) and in the boundary conditions (2.2) we obtain
using uy, := u(t, zx) the following problem for Differential-Algebraic Equations
(DAE).

N+1 N+1 N+1

du
dtk = A(t, zk, ug, Z ak’]u] Z a,(j;u] + B(t, zk, ug, ; ag, i), (2.8)
where £k =1,2,...,N, and a( ) are elements of the matrix A2,
N+1
Gl(t, Uo, Z ao’ju]') = 0, (29)
=0
N+1
Gz(t, UN+1, Z aN+1,juj) =0. (2.10)
Jj=0

This problem (2.8) — (2.10) contains the system of N differential equations
and two algebraic equations. Solving of such problems for DAE is considered
in [6]. The problem (2.8) — (2.10) can be presented also in the following
vector-matrix form. Let

N1 N1
v 1= At Tr,uk, Y akjuy), wy = Bt g, uk, Yy ag ju;) (2.11)
=0 =0

fork=0,1,...,N+1 and W= (wo,w1,... wn+1). Eliminating the first and
last scalar equations in

-1l

d

=U (A;—)2 diag(vg) + W (2.12)

U

t

and adjoining (2.9) and (2.10) to obtained N equations we have the problem
equivalent with (2.8) — (2.10).
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3°. If this ADE problem (2.8) — (2.10) is of index 1 then the values of
function u at endpoints = a,x = b or ug, un4+1 can be excluded. In this case
we obtain the problem for ODE with respect to u(t, zx),k = 1,2,..., N. Thus,
now the method is finished using the straight line method. DM methods often
are appropriate for solving the received ODE guaranteeing a high accuracy.

Variant B. This case differs from the variant A only in that the matrix
equation (2.12) obtained in point 3° has been multiplied one or several times
by the pseudo-inverse matrix B of the matrix for derivatives A]. Those
matrices are considered in [3]. They can be defined by

B,A,=E-1 or A/B =E-1I". (2.13)

where E is the identity matrix and (N + 2) x (N + 2) matrix I is chosen
according to the equality

rank(E—I) =N + 1. (2.14)

Often we choose as I some matrix I,,, which has all elements equal to zero
except the m-th column consisting of 1’s, or a linear combination

I= a111 + a212 + ...+ OLmIm (215)
with
a1 +os+...+ay, =1.

We note that the equality I = I; can be usually applied for ODE.
An application of pseudo-inverses matrices is appropriate if the equation
(2.1) can be represented in the form

ou_ o
ot Oz

(Al(t, z, u)%) + B (t, T,u, %) (2.16)

For example, such representation is possible if the function A in (2.1) does
not depend on u!,.

The considered solving schemes can be also used if the problem (2.1) — (2.2)

contains: )

0 0
1) the derivative a—tg instead of —u;
2) nonlocal boundary conditions instead of (2.2);
3) derivatives of higher order than 2 with respect to z.
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3. THE SIMPLE TEST PROBLEM

In order to determine the effectiveness of the schemes presented in the previous
Section we consider as an example the problem

6_u — 282_” + ct
2 )
gﬁ 0 ou 0 (3.1)
8_33 r=—1 8_.71' - = U,
. T
ult=o = f(x) = ¢p — ¢ sin o> + ¢o cos(2mz). (3.2)

Here a, ¢, cg, c1,c2 € R are given constants. The exact solution of the problem
is given by

ct? T a’n’t
u(t,z) = — + ¢ — ¢1 sin e exp (— T ) + ¢z cos(2mz) exp(—4a’7?t).

2 2 4
(3.3)
We will consider here both variants of the method.
Variant A. Choosing N + 2 nodes
—l=z<z1<...<zZNy <2ZNnt1 =1,
where z1,2,...,2N are, for example, zeroes of Chebyshev polynomials of

the second kind and applying the (IV + 2) x (IV + 2) matrix A, = (ax,;) for
derivatives we discretize the equation (3.1) with respect to z:

—

dU = -
o= a®U(A])? + ctl. (3.4)
Notation from Section 2 are used also here and T := (1,1,...,1). Now we

must use the vector equation (3.4) without first and last components, but
uo and uy41 must be eliminated using discretized boundary conditions (3.1)
that is, two linear algebraic equations:

N+1 .
> i—o @o,ju; =0
—+1

3.5
Yj=o @N+41,u; = 0. (3

After that we obtain the system of ODE for uy = u(t,zx),k=1,2,..., N:

di -
d_1: = a?dS + ctl. (3.6)
Here @ = (u1,us,-..,uy), and elements of N X N matrix S are in the form

2 2 2 .
Sk = ag )+ agoB +ai v, ki =1,2,...,N, (3.7)
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(2)

where a;; are elements of the matrix (A,)?,
1
Bi = 5(a0,N+1aN+1,j = AN+1,N+1G0,5);
1

v = 3(aN+1,oao,j — G0,0aN+1,5),
d = ap,04N+1,N+1 — G0,N+1GN+1,0-

The values of f(x) on nodes x1,%2,...,2 N are chosen as the initial values for
ODE (3.6). This problem was also solved using the DM method with nodes

0=t0<t1<...<tM<tM+1=h

for M = 2 and different step sizes h. Such methods were in detail analyzed
in [3; 4] and are not considered here.

Variant B. Now after obtaining (3.5) we define the pseudo-inverse matrix
B, = (by,;) for A, by equality

B,A, =E -1, (3.8)

where I = (I; 4+ In42)/2 is one of matrices (2.15). Multiplying twice (3.4)
from the right side by (B )? and taking in account boundary conditions in
(3.1) leads to

dﬁ 2 -2 a/2 - -
o (B,) =a’U - E(uo +uni)I =cti(B])% (3.9)
We must use the equality (3.9) by analogy with (3.4) without first and last

d
UN+1 on the boundaries z = +1

Uo
components. The values ug, un41, v and

also must be eliminated from (3.9). For ug and un41 we have already the
equations (3.5), but for derivatives — the similar relations

du du; du du
-2 Zﬁj I N“ Z i J (3.10)

which follow from (3.5) and boundary conditions in (3.1). Finally we have
the following implicit system of ODE for u; = u(t,z;), i =1,2,...,N:

di - a2 al
—P =a"u1— — Z(ﬂ] + vj)uj + ctd, (3.11)

7j=1
where P is the N x N matrix with elements
Dk,j = b(2) + Bjby (2) ot 'YJbScZ,%VH?

(3.12)
@ =12 - 1,23 -1,...,2% —1);
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Table 1.

Errors of numerical results for the test problem
N Variant A Variant B

h erry h errs

5 1/50 3,7. 1071 1/100 2,6. 1072
7 1/100 1,9. 102 1/200 9,6. 104
9 1/250 4,1. 1073 1/400 4,8. 1075
11 1/500 2,9. 104 1/800 1,7. 106
13 1/1000 1,5. 1073 1/1500 5,1. 1078
15 1/1500 6,1. 10=7 1/3000 1,2. 107°

bg are elements of (B,)2. After multiplying from right side by P~ we can

use then also the DM method for solving (3.11) in analogy with the Variant 1.

Numerical experiments. The best numerical results for problem (3.1) —
(3.2) were achieved choosing grid points for z as zeroes of Chebyshev polyno-
mials of the second kind. The magnitudes of the global errors of both variants
for t =1 and values of constants a = 2,¢ = 50,¢9p = 1,¢1 = 2,¢5 = 3 are given
in the Table 1. In calculations we use M = 2, different N and different step
sizes h for t. Here we denote

err; = mI?x|u(1,.'L'k) —a(1, zg)],

erry = ml?,x|u(1,:rk) —a(1, zy)l,

where u(1,zy) are exact values, calculated by (3.3), and 4, 4 — corresponding
rough values.

From Table 1 it is obvious that the results obtained using pseudo-inverse
matrices (Variant B) are more accurate than the Variant A.

4. NUMERICAL SOLUTION OF THE NONLINEAR PROBLEM
OF PDE

Here we consider a mathematical problem which is proposed as the model of
dynamics of an elongated droplet under the action of a low frequency rotating
magnetic field [1].

Mathematical formulation of the problem is the following. It is necessary
to solve the equation

0 0*u 0% .
& (U+Ew) = @(smﬁt—l—au) + w (41)

with initial values

ul¢=0 = f(x) (4.2)
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and boundary conditions:

Oou | Ou |

. lz=—1=C1, 5 |lz=1 = C2,

Ty z 3)
€ 9.201 lg=+1 = sin2ul,__, .

Here e = 1072 + 1074w =3 + 5;0 < a < 2;¢; and ¢y are given constants. If
¢1 = —cp and f(z) is even function of « € [—1, 1], then the solution is also the
even function with respect to z. We will consider only this symmetric case
taking ¢; = —cg = ¢. Let xo,21,...,ZN,ZN41 be nodes in [—1,1] and

w(t,zr) == ur(t), U= (uo(t),ur(t), ..., uni1(t)). (4.4)

Discretization according to x by means of matrices for derivatives leads to the
equation

du (
dt

It can be reduced to a more simple system for ODE by multiplying (4.5 ) from
the right side two times with pseudo-inverse matrix B defined by (3.8), and
eliminating uo(t) and uy1(t) by means of boundary conditions (4.3) (see, the
variant B of Section 3). After some simple but long computations we obtain
the following system of ODE.

E+e(A])") = (sin 20 + o0) (AT)? + wT. (4.5)

Y duy(t)
Zsk’j# = Fk (1'1,.. . ,wN,ul(t), ,UN+1(t)), (46)
=1

uk(O) = f(mk)a k 1,2, , N, (4 7)

where

2 2 2
Sk,j = Qk,j +E0k; — Tk, ap; = b( ) +b;(c()) j + b 3v+ma

N
1
2 2 2
Ok,j = a;e; a| )/BJ + al(c 3\'-{-1'7]7 0; = 2 Z(ao’i +aN+1,0)04,
=1
Fy, = sin 2ug(t) + aug(t) + g(wi -1)-
o lec -
2 E(aN+1,N+1 + Go,N41 = Go,0 — ant1,0) + Z Bi )i ()]
j=1

and ay, j, agg, bgf;, d, Bj,7; are the same as in Section 3.
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U val ues

Figure 1. The sample of numerical solution

The problem (4.1) — (4.3) was solved numerically again by DM methods.
Obtained numerical results are in all cases qualitatively the same as those
in [1]. Here in Fig.1 we present an example of numerical results in the case
a=2/3;w=>5;¢; = —ca = 15/8;¢ = 1073, In calculations we chose N =
11; M = 5; the step size h = 0.04 for ¢, and nodes x1,z2,...,x11 for = as
zeroes of the Chebyshev polynomial Uy ().

5. SOME CONCLUSIONS

Advantages:

1. It is reasonably simple to take into account various boundary conditions,
including nonlinear and nonlocal.

2. It is easily to change the number and the location of the grid points.

3. Without major changes the method can be applied to the hyperbolic equa-
tions also.

Disadvantages:

1. The increase of the number of grid points for x leads to decrease of the
step size h for t.

2. The method requires considerable amount of computing time.



200 T. Curulis, O. Lietuvietis

REFERENCES

[1] A. Cebers. Dynamics of an Elongated Magnetic Droplet in a Rotating Feld. Phys. Rev.
E. (to be published)

[2] D. Cirule, T.Cirulis and O. Lietuvietis. Multistep Degenerate Matrix Method for ODE.
Mathematical Modelling and Analysis, 6(1), 58 — 67, 2001.

[3] T. Cirulis and O. Lietuvietis. Degenerate Matrix Method for Solving Nonlinear Systems
of Differential Equations. Mathematical Modelling and Analysis, 3, 43 — 56, 1998.

[4] T. Cirulis and O. Lietuvietis. Degenerate Matrix Method with Chebyshev Nodes for Solv-
ing Nonlinear Systems of Differential Equations. Mathematical Modelling and Analysis,
4, 51 — 57, 1999.

[5] T. Cirulis and O. Lietuvietis. Degenerate Matrix Method for Solving Some Stiff Differ-
ential Equations. In: Numerical Mathematics and Advanced Applications. Proceedings
of 3-rd European Conference, World Scientific, 456 — 461, 2000.

[6] E. Hairer and G. Wanner. Solving Ordinary Differential Equations 2. Springer-Verlag
Berlin Heidelberg New York, 1996.

DM metodo taikymai uZdaviniams lygtims dalinémis i§vestinémis
T. Cirulis, O. Lietuvietis

Straipsnyje nagrinéjami du iSsigimusiy matricy metodo taikymai uZzdaviniams su dalinémis
iSvestinémis spresti. Pateikti pavyzdZziai — paprasto testinio uzZdavinio sprendinys ir sudé-
tingesnio netiesinio uZdavinio penktos eilés lygties dalinémis i§vestinémis sprendinys.



