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ABSTRACT

This work focuses on the development of mathematical models describing moisture move-
ment in wood, when the wood is considered as porous medium. Main moisture transport
mechanisms are discussed. It is shown how the wood can be described as a two- or three-
phase system. Summaries of several multiphase flow models are presented in the hierarchical
order: from the most general models to more simple examples. The approximation steps
are described explicitly, and all assumptions are given in detail. It shown how models for
specific applications in wood drying or saturation can be obtained.
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1. INTRODUCTION

Development of mathematical models to describe wood drying process has
been a topic of scientific research for many decades [17]. Since Tuttle (1925)
[22] have presented the first mathematical theory for wood drying, numerous
models have been developed. Basically these models can be classified into
three categories: empirical curve-fitting equations, moisture diffusion equa-
tions, and fundamental heat and mass transfer equations.

Historically, most models are based on the moisture diffusion equation,
which is derived using Fick’s law. They are widely used due to their relative
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simplicity and for many applications proved to be satisfactorily accurate [4;
6; 18; 22]. The use of diffusion equation is usually restricted to the drying
below the fiber saturation point (FSP), where only water vapor and bound
water are involved and transported by molecular diffusion. However, there
is precedent and some rationale for using the framework of the mathematics
of diffusion for low-intensity wood drying even above the FSP [7; 12]. In
this case, an assumption is made that the drying rate is proportional to the
moisture gradient in the wood. No assumptions are made about mechanisms
of moisture movement in the wood, which are not considered in such models.
The coefficient of diffusion equation is called an internal moisture transfer
coefficient instead of diffusion coefficient. Several methods are developed to
determine the internal and surface moisture transfer coefficients [7; 18].

However, over the last decades the development of more accurate and gen-
eral models [15; 16] becomes more popular. In such models the wood is
considered as porous medium and multiphase flow and heat transfer is taken
into account. These models are derived from fundamental mathematical mod-
els describing multiphase flow and heat transfer phenomena in porous media,
which are based on principles of conservation. Since such models allow more
accurate modeling in general, the use of them becomes inevitable for some
applications. For example, high-intensity vacuum drying of wood cannot be
modeled by models based on the diffusion equation.

This paper focuses on the development of mathematical models describ-
ing moisture movement in the wood, when the wood is considered as porous
medium. First in Section 2, we discuss the main moisture transport mecha-
nisms and show how the wood can be described as two- or three-phase system.
In Section 3, we review fundamental multiphase flow and heat transfer mod-
els. Summaries of several models are presented in hierarchical order: from the
most general to more simple and approximated ones. In Section 4, we give an
example how models for specific applications can be derived from these basic
models. Finally, conclusions are made in Section 5.

2. MECHANISMS OF MOISTURE MOVEMENT IN WOOD

In this section we will describe main mechanisms, which are important for
moisture movement in wood.

Moisture exists in the wood as a bound water within the walls of the cells,
free water in liquid form and water vapor in gas form in the voids of wood.
The main difficulty in modeling moisture motion in wood is the fact that
more than one mechanism may contribute to the total flow of water and
the relative contribution of different mechanisms may change as the drying
process proceeds. Modeling is also complicated because wood is an anisotropic
medium.

If in the permeable wood the moisture content (MC) is above the FSP,
then the existing free water can be transported through the interconnected
voids by hydrodynamic flow due to the pressure difference or driving force,
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like gravity. The pressure difference in liquid phase is caused mainly due to
the capillarity - molecular attraction between the liquid and the solid matrix,
but it also can be the connected to external pressure (e.g. vacuum), thermal
expansion, internal steam pressure.

At temperatures approaching and exceeding the boiling point of water,
rapid vapor generation may produce significant total pressure gradients in
addition to partial vapor pressure gradients. Water vapor will be moved from
a high pressure to a low pressure regions by the gas-dynamic flow under total
pressure difference. Although the density of water vapor is small, the volume
flow rate is large under the certain pressure differences and significant amount
of moisture may be transferred by water vapor gas-dynamic flow.

As an example we consider the vacuum drying. In vacuum drying [15], the
lumber is placed in a tight drying chamber. The vacuum drying system pulls
a vacuum on the lumber so that the water in wood is boiling and is drawn
out of the wood. The gas-dynamic flow of water vapor becomes a dominant
transport mechanism in moisture movement. Vacuum drying is actually based
on the fact that the boiling point of water is substantially lowered when the
atmospheric pressure over the wood is lowered. Usually, it is about 40 C.

In cyclic vacuum drying, the lumber is also in addition intermittently heated
by a hot air convection. After the wood has reached the required temperature,
a vacuum is pulled on the lumber. The drying starts and takes place till the
drying rate is very small, then the whole cycle is repeated.

Unlike bulk flows of free liquid and vapor, diffusion process is the transfer
of a material by essentially random molecular motion of single molecules in
response to concentration gradients. Water and other small molecules can
migrate across cell walls even when wood is impermeable and there is no
pressure gradient.

In Fickian diffusion, all water molecules are free to migrate. They generally
diffuse from a region of high moisture content to a region of low moisture con-
tent, which reduces the moisture gradient and equalizes the moisture content.
The rate of diffusion is increasing with temperature. This is the principle
reason for drying the wood at higher temperatures. Diffusion plays an impor-
tant role in the drying of lumber, at all moisture content with impermeable
wood and in permeable wood wherever the moisture content is too low for
hydrodynamic flow of free water and there is no total pressure difference for
gas-dynamic flow of water vapor.

There are two types of diffusion occurring in the wood, i.e. vapor diffusion
and bound water diffusion. Vapor diffusion is the transfer of water vapor
through the air in the voids of the cells. Bound water diffusion is water
transfer within the walls of the cells.

In the Figure 1, we show how the wood is described as a three-phase sys-
tem. The moisture phases and main transport mechanisms are presented. The
phase changes include evaporation and condensation, absorption and desorp-
tion.



180 R. Ciegis, V. Starikovicius

Moisture in wood
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Figure 1. Wood as three-phase system.

3. FUNDAMENTAL MULTIPHASE FLOW MODELS

The multiphase flow in porous media has gained recently a lot of attention.
This is due to the fact that problems involving the multiphase flow, heat
transfer, and multicomponent mass transport in porous media arise in a broad
spectrum of engineering disciplines. Important technological applications in-
clude the drying of porous solids and soils [27], subsurface contamination and
remediation [2], thermally enhanced oil recovery, geothermal energy produc-
tion, porous heat pipes [23], multiphase trickle bed reactors, nuclear reactor
safety analysis, high-level radioactive waste repositories, paper machines.

The earliest modeling efforts involving multiphase flow in porous media
began in the petroleum industry. Over the last decades a lot of efforts was
made to create fundamental mathematical models for those phenomena. In
this section, we review several fundamental multiphase flow and heat transfer
models. We compile them in hierarchical order from the most general to more
approximated and simplified in order to provide a basis for further model
developments and applications to specific problems, as we will do in Section
4 for moisture movement in wood.

However, this is not an extensive review of the literature. The extensive
reviews of multiphase flow and heat transfer studies are given in [13; 14; 25;
27].

3.1. Multiphase Flow Model (MFM)

Traditionally multiphase flow in porous media has been approached by so-
called Multiphase Flow Model [2; 5], in which various phases are considered



Mathematical modeling of wood drying process 181

as distinct fluids with individual thermodynamic and transport properties and
with different flow velocities. A brief summary of the MFM for multiphase,
multicomponent transport in a porous medium is given below. The following
set of governing macroscopic equations can be either semi-empirically postu-
lated [5] or derived by the volume averaging method [2].

In latter case, the macroscopic equations are obtained by taking the aver-
age of the microscopic equations over the representative elementary volume
(control volume). The microscopic equations are the equations of momentum,
mass and energy conservation in all considered phases and at the interfaces.
The control volume should be larger than the maximum dimension of any
phase element, but much smaller than the characteristic scale of the system
(Figure 2). Such scale changing enables to convert the real discontinuous
medium to a fictitious continuous equivalent one. Each macroscopic term is
obtained by averaging microscopic one. The averaging (integration) is done by
using various closing assumptions (homogeneity, periodic cell structure etc.)
[27].

liquid phase (I)  golid matrix (s)
volume element of

y two-phase mixture
l  in a porous medium

vapor (v) or gas (vapor plus inert) phase

Figure 2. Schematic illustration of a control volume in multiphase system.

Here are the governing equations of MFM for multiphase, multicomponent
transport in a non-deformable porous medium:
1. Mass conservation in phase k:

0 (pr5k)

ET + V- (prug) = my, (3.1)

where ¢ is the porosity of porous medium, py is the phase density, s is the
phase saturation denoting the volumetric fraction of the void space occupied
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by phase k,
sk =1, (3.2)
k

and uy, is the superficial (or Darcian) velocity vector (volume rate of flow
through a unit cross-sectional area of multiple fluids and porous medium).
It is also called bulk velocity. The term my represents an interfacial mass
transfer rate from all other phases to phase k. In the absence of any external
mass source or sink, it follows that

> mg=0. (3.3)
k
2. Momentum conservation in phase k:
_ krk
u = _Kﬁ (Vpr — prg) , (3.4)

where K is the absolute permeability tensor of porous medium, k. is the
relative permeability of phase k, uy is the phase dynamic viscosity, py is the
phase pressure, and g is the acceleration vector due to gravity. The difference
between the pressures for two adjacent phases k and j is called a capillary
pressure (pcx; = pr — ;). It is related to saturations, pore size, pore shape,
the angles at which fluid water air interface contacts the solid surface, the
density difference between phases, temperature and radii of the curvature of
the interface.

This generalized Darcy’s law is valid if inertia as well as (macroscopic)
viscous, boundary effects can be neglected, for example if velocities of fluids
are quite small. In other case, well-established expressions from analogy with
Navier-Stokes equation should be used [3; 13]. For example, a quadratic
inertia term is often introduced for modeling the inertia effect.

3. Mass conservation of component a in phase k:

6 (1o T
5 (eprskCy) + V- (prurCF) = =V - ji + J2, (3.5)

where C is the mass concentration of component (species) « in phase k,
docp=1, (3.6)

and j{ is an average flux vector which represents the nonadvective (diffusive)
flux of component « in phase k due to molecular diffusion and/or hydrody-
namic dispersion. It is usually expressed in Fickian form:

i¥ = —eprsDEVCR, (3.7)
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where D is a macroscopic second-order tensor incorporating both diffusive
and dispersive effects. The last term J in equation (3.5) denotes the interface
transfer rate of component « caused by chemical reaction (chemical nonequi-
librium) and/or phase change at the interfaces between phase k and all other
phases. Recognizing that production of component a in phase k must be
accompanied by destruction of component « in other phases, it follows that

Y g =o. (3.8)
k

It is assumed that there is no external generation of components due to the
chemical or biological reactions.
4. Energy conservation in phase k:

0
a (8pk8khk) + V- (pkukhk) =V- (Eskk’kVT) + qk, (3.9)

where local thermal equilibrium among phases has been assumed (T = T for
all k), and ky and g, represent the effective thermal conductivity of phase k
and interphase heat transfer rate associated with phase k, respectively. Hence,

dan=gq, (3.10)
k

where ¢ is an external volumetric heat source or sink. The phase enthalpy hy
is related to common temperature 7" via

T
hkz/ cx dT + hY, (3.11)
0

where ¢;, and h) represent the effective specific heat and the reference en-
thalpy of phase k, respectively. The validity of the local thermal equilibrium
assumption is discussed in [3; 13].

The above basic conservation laws provide a system of governing equations
for the unknown vector velocities uy, scalar pressures pg, scalar saturations
Sk, mass concentrations C}', and the common temperature T. In general case,
the averaging can be seen as a process of giving the guidance: what kind
of terms must be included into macroscopic equations. However, it cannot
eliminate completely the need in the postulation. To close the system, we
need an additional set of equations.

The constitutive relationships specify how the phases interact with them-
selves, with each other and with porous medium. The state equations specify
the thermodynamic state of the phases as functions of those state variables
that determine it. The closure conditions are determined by experiments.
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Commonly, these experiments are made for very specific flows and flow situ-
ations and may be often valid only for specific application in a narrow range
of flow conditions and concentrations.

The availability and reliability of constitutive relationships for moisture
movement in wood are the main difficulties in multiphase modeling approach.
However, there is a scientific literature devoted to capillary pressure [19],
relative permeability [20], etc.

In the multiphase flow models, an assumption is commonly made that the
gas (vapor) phase is ideal from thermodynamic point of view. Then modified
state equations for an ideal gas are often used to determine the temperature
in isothermal two-phase zone [23] or to express the gas phase density as a
function of temperature and pressure.

Solving practical problems with MFM, which usually involve multi—dimen-
sional effects, gravity, capillarity and phase change, requires a solution of
multiply coupled sets of nonlinear differential equations. For this reason, there
has been a great number of studies to develop robust numerical algorithms [10]
for MFM on the one side and to derive approximate, simplified models [14]
on the other. One of such models is recently developed multiphase mixture
model [24].

3.2. Multiphase Mixture Model (MMM)

A key idea in the multiphase mixture model is a concept of the multiphase mix-
ture, which is considered as a single fluid consisting of diffusing constituents
(phases). Multiphase flow is then described in terms of mixture properties and
characteristics (density, velocity and etc.) by set of conservation equations,
which are derived from classical MFM. Also, explicit relations describing the
relative motions between the multiphase mixture and individual phase are
obtained and can be used to determine the individual phase variables from
the mixture variables. Therefore, no phase characteristics are lost.

Here are the basic definitions of the MMM. The mixture density, velocity,
species a concentration and enthalpy are defined, respectively, as

pP= prsk, pu= Y pruag, pC* =D ppsiCy, ph =Y prsche. (3.12)
k k k k

The mixture kinematic viscosity and the mobility of phase k (sometimes called
the fractional flow function) are given by

-1
kri kri
V= (Z Z) 5 )\k = Zl/, Z)\k =1. (313)
k

k

The mixture pressure is defined in the model so that the following differential
equation holds:

Vp = Z)\ijj =Vpr + Z)\ijcjk- (3.14)
- -

J
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Note that such pressure definition implies restrictions on the constitutive re-
lationships like relative permeabilities and capillary pressure functions, and
so on the applicability of MMM.

Here is the summary of governing equations of MMM:
1. Mass conservation of the multiphase mizture:

6% + V- (pu) =0. (3.15)

2. Momentum conservation of the multiphase mixture:

pu = —% (Vp— (Z /\kpk> g) = —% (VD =08), (3.16)
k

where 1, is called the density correction factor. Similarly to MFM, modified

momentum conservation equation from analogy with Navier-Stokes equation

are used to include the non-Darcian effects into multiphase mixture model [26].
The phase velocity uy, is expressed as

PrUk = ji + Arpu, (3.17)

where ji is the diffusive mass flux of phase k within the multiphase mixture
and it can be expressed as follows:

K)\k Z)\ Vpczk + - Z/\ Pk — pz (318)

3. Mass conservation of component « in the multiphase mixture:

6

€5 (pC*) + V- -(y2puC*) =V - (pD*VC?) (3.19)
+ V. (e 3 (prsiDE(VCE - VCO®)) ) (Z ckjk)
k

where ¢ is a correction factor for species advection and D is the effective
diffusion coefficient for the multiphase mixture. They are defined respectively
as

a ka ’\kck D> o
Yo = = A~ p = E PkS D¢. 3.20
¢ E kpkskCg‘ K2k =k ( )

4. Energy conservation for the multiphase mizture:
0 .
5 (L =¢€)pshs +eph) + V - (ywpuh) =V - (keysVT) =V - (Z(hk.]k)> +4q,

* (3.21)
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where k.yy is an effective thermal conductivity of the composite system con-
sisting of the solid matrix and the multiphase mixture, -y is a correction factor
for energy advection, ¢ is an external volumetric heat source or sink.

An advantage of MMM is that it requires much fewer nonlinear and coupled
differential equations to be solved comparing with MFM. It avoids also such
difficulties as the presence of the moving and irregular interfaces between
the single- and multiphase regions. The model is single-domain formulation
and all governing equations are valid throughout a whole problem domain
including single- and multiphase regions. In addition, the formulation strongly
resembles the single-phase transport theory and, thus, is amenable to solutions
by conventional numerical algorithms.

The MMM approach allows also to obtain several other models for some
simplified conditions. For two-phase single-component systems (liquid and va-
por), the following liquid saturation equation can be obtained by substituting
expression (3.17) into equation (3.1)

0 (ps .-

5% +V-(puN) ==V -ji+my (3.22)
and used in conjunction with the mixture continuity equation (3.15) and
Darcy law (3.16). Further simplifications can be made for immiscible, in-
compressible fluids.

3.3. Unsaturated Flow Theory (UFT)

In order to alleviate the analytical and numerical difficulties associated with
MFM, an approximate model called the Unsaturated Flow Theory was devel-
oped and widely used by hydrologists [14]. Applications of UFT to the other
multiphase problems in porous media were also made. In this subsection, we
briefly derive from MFM the well-known Richards equation of UFT to gain
insight into the important assumptions made in the theory and thus identify
its limitations in certain situations.

Substituting equation (3.4) into equation (3.1) for a liquid phase (e.g., water
in hydrology), we obtain

d(pis1)
Y

ky. kr _
+ V- (—K—lel + K—lplg> = my. (3.23)
14 v

This provides the single equation for two unknowns, s; and p;. In order to
close the model, it is traditionally assumed in UFT that the gas phase (e.g.,
air in hydrology) essentially remains at the constant pressure (e.g., equal to
atmospheric pressure):

Dy = const. (3.24)

From the capillary pressure definition, it follows then that Vp; is simply given
by
dpe

Vp = Vpy — Vp, = — ds, Vsy. (3.25)
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Using equation (3.25) and neglecting the interphase mass transfer m;, we
obtain from equation (3.23) the well-known Richards equation:

25 g pys)—v. (K@p,g) , (3.26)
8t 14

where the diffusion coefficient is defined as

kv dpe
D(s)) = —K#dL;. (3.27)

So, the main limitations of UFT are that it neglects the gas phase motion,
interphase mass transfer, and effects of heterogeneity on the capillary pressure.

4. OTHER MODELS FOR MOISTURE MOTION IN WOOD

In previous sections we have showed how the general MFM, MMM, UFT, and
other multiphase models can be applied to simulate the processes of moisture
motion in the wood. The presented hierarchy provides us with important
limitations of the models for specific applications. We note that Richards
equation resembles classical moisture diffusion equation. However because
of (3.24), it can be applied only in low-intensity conditions of conventional
drying, when gas dynamics can be neglected. The use of multiphase models is
inevitable in high-intensity drying conditions, for example, in vacuum drying,
when the gas phase dynamics become critical.

In some applications, it is clear which process dominates the moisture trans-
port in the wood and then the other processes can be neglected without the
significant loss of accuracy. Then a simplified model can be obtained and
used. In this section, we will obtain from MFM one differential model for
modeling the conventional drying above the FSP or saturation of wood with
chemical substances, when the first group processes dominate, and for con-
ventional drying below FSP, when the third group processes dominate (see
Figure 1).

In the first case we can apply assumption (3.24). From equation (3.23), we
get for liquid phase:

%—FV-(UC)zV-(DVC)—anl,

where we define the moisture content ¢(z,t) in the void of wood cell (there
is almost no vapor in gas phase), diffusion D and convection v coefficients,
respectively, as

le dpc krl
t) = D=-K22< ,-K
cz,t) = episi, cmds U= %o
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If third group processes dominate (conventional drying below FSP and almost

no free water left), then we have equation (3.5) for the vapor concentration
Cy’ in gas phase:

0
=7 (€Pg59Cy) + V- (pgugCy) =V - (esgpy Dy VCY') + 1y,

ot g

w y 1
esgpgCy’ = c(w,t), s,=1, D=Dg, v= o)
Oc _
a-ﬁ-V'(I/C) =V - (DVc¢) + my.

In both cases, we are not neglecting the interphase mass transfer with solid
phase (absorption and desorption). For the bound water concentration C¥ in
solid phase, neglecting all motion in the wood matrix, we get

0
=7 (1 =8)psC) +0 =0+ ms,

ot

(1—2)p,C = s(a, 1),
O0s

E =Mms,

where s(z,t) is moisture content in the wall of the cell.
It follows from equation (3.3) that

my+ms =0, my+m, =0.
In both cases, we couple the equations in the following way:

Oc

5 TV (o) = V-(DVe) —p(lc)e = g(s)s), (4.1)
% = p((c)c—g(s)s), (4.2)

where nonnegative functions I(c) and g(s) describe moisture absorption and
desorption and depend on pressure of vapor, relative humidity, chemical po-
tential and moisture content in corresponding environment. Examples are
constants I(c) =1 > 0, g(s) =1 and Henry law: I(c) =1, g(s) = k/(1 —vs),
where v > 0 and vs < 1, for any s.

The obtained differential model (4.1)-(4.2) is not new in its form and de-
scribes a broad class of real world problems. For example, similar systems
were used for modeling the gas absorption by porous material [21] (without
diffusion term), saturation of wood with certain chemical substances [1], and
even the transport of soluble substances in rivers [11].

However, such model development has clear benefits even when formally not
a new model is obtained. It allows to spot unknown or missed restrictions and
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limitations in the model and gives a vital information about the coefficients,
which should be used. For example, modeling conventional drying above the
FSP, we see, that diffusion coefficient D has nothing to do with the physical
process of moisture diffusion in the wood.

This model was numerically investigated in our previous works. The ef-
ficient finite difference scheme for solving one-dimensional linear case was
presented in [9]. The unconditional stability estimates and convergence of
the discrete solution are proved in the maximum norm for different types of
boundary conditions. The locally one-dimensional splitting scheme was pro-
posed for three-dimensional linear case in [8]. The unconditional stability and
convergence in the maximum norm are proved for a problem with the Robin
boundary conditions.

5. CONCLUSIONS

In this paper, hierarchy of several fundamental multiphase flow models has
been compiled. It is shown how these models can be applied to the wood
considering it as two- or three-phase system. A simplified model describing
moisture motion in the wood is derived from basic multiphase flow model
using assumptions specific for certain applications.
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Medienos dZiovinimo proceso matematiniai modeliai
R. Ciegis, V. Starikoviius

Siame straipsnyje pagrindinis démesys skiriamas drégmeés koncentracijos kitimo medienoje
matematiniam modeliavimui, kai mediena yra nagrinéjama kaip poringa terpé. Yra ap-
tarti pagrindiniai skys¢iy judéjimo mechanizmai, naudojant dvifazius ir trifazius artinius.
Sudaryta hierarchiné modeliy sistema, apimanti tiek pa¢ius bendriausius modelius, tiek ir jy
supaprastintus varijantus. Visi modeliy i§vedimo Zingsniai apraSomi iSreikStiniu budu, griez-
tai suformuluotos tokiy modeliy teisingumo prielaidos. Parodyta, kad esant tam tikroms
salygoms i§ §iy modeliy galime gauti gerai Zinomus artinius, teori§kai pagristos jy koeficienty
iSraiskos.



