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ABSTRACT

The problem of linear discriminant analysis of an observation of Gaussian random field
into one of two populations is considered. In this paper we analyze the performance of the
plug-in linear discriminant function, when unknown means are estimated from the training
samples. The generalized least squares and the ordinary least squares estimators are used.
Obtained asymptotic expansions for the expected error rate are compared numerically in
the case of spherical models for population covariances.

1. INTRODUCTION

Let {Z (s):s € D C R*} be a univariate Gaussian random field having dif-
ferent means and factorized covariance matrices in populations ; and 5.
The model of Z (s) in population €Y is

Z(s)=x] (s) B +eils),

where z{ (s) = (211 () ,..., 71, (s)) is a ¢ X 1 vector of nonrandom regressors
and 3 = ([311, e ,ﬂlq)T € B, 1l =1,2, are parameter vectors, B being an open
subset of R?. Assume, that {g; (s) : s € D C R?} is a zero-mean intrinsically
stationary random Gaussian field with spatial covariance defined by a para-
metric model cov {g; (t),e; (s)} = o (t — s;6;) for all t,s € D, where 6, € ©
is a p x 1 parameter vector, ©® being an open subset of R, [ = 1,2. We re-
stricted our attention to the homoscedastic models, i.e. o (0;6) = o2, for any
6 € ©. Then in € the mean function at location s is w (s) = 2f (s) 5 and
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the spatial covariance function in cov {g; (t),&;(s)} = o%c(t — s;6;), where
¢ (t — s;6;) is the spatial correlation function, [ = 1,2. It is assumed that the
function ¢ (t — s;6;) is positive definite (see [6]).

Agsume that, for all t,s € D, t # s,

cov{ey (t),e2(s)} =0. (1.1)

Consider the problem of classification of an observation Z,, = (Z (r1),...,
Z (rm))T with r; € Dy C D, i =1,...,m into one of two populations spe-
cified above. Instead of considering the classification of m observations, let

us consider one of the observations, say Z (r). Then the probability density
function (p.d.f.) of Z(r) in Q;,1=1,2,is

1 1 2
z(r) s (r),0%) = ——ex {——zr—xTr }
pl(()ﬂl() ) \/%0_ p 20_2(() ()ﬂl)

Under the assumption, that the populations are completely specified and for
known prior probabilities of populations m (r),m (r) (71 (r) + m (r) = 1),
the Bayesian classification rule (BCR) dp (e) minimizing the probability of
misclassification (PMC) is

dp (z(r)) = arg (nax i (rp(z(r), (1.2)

)

where 7 () is a prior probability of ;,1 =1, 2.

Denote by Pz the PMC for BCR usually called the Bayesian error rate.

In practical applications the p.d.f. are usually unknown and must be es-
timated. Very often unknown parameters are estimated from the training
samples T and T, taken separately from Q; and s, respectively. When
estimators of unknown parameters are used, the plug-in version of BCR is
obtained.

The performance of the plug-in version of the BCR when parameters are
estimated from training samples with independent observations was widely
investigated (see e.g. [8]). However, it has been founded that the assumption
of independence is frequently violated. [4] investigated the performance of
sample linear discriminant function (LDF) when training samples follow a
stationary autoregressive process.

In this paper we shall consider the performance of the plug-in linear
LDF when the unknown means are estimated from training sample following
a Gaussian random field model described above assuming the spatial depen-
dence parameters to be known. The maximum likelihood (ML) and ordinary
least squares (OLS) procedures for the estimation of unknown means are used.

Suppose in region Dy C D, Dy N Dy = (), we observe the training sample
T ={T\,T>} with T; = {Zj1, ..., Zin,}, where Z;, = Z (s1,) denotes the a’th
observation from €, « = 1,...,N;, I = 1,2. Assume that D; is beyond the
range (or the zone of influence) of Dy. Then Z (r) is independent on T'.
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Let zi; (r) be the estimator of g, (r), based on T'. The plug-in rule dg (z (r) ;
i1 (1), p2 (1)) is obtained by replacing the parameters in (1.2) with their
estimators.

Then the corresponding discriminant function W also known as the plug-in
LDF is

where g(r) =In

~

DEFINITION 1.1. The actual error rate of dg (2 (r) ;1 (), iz (r)) is defined
as

P (i () i (1) 2 S i () (1.4)
=1
x / (1= 6 (L d (= ()i (1) i () pr (= ()5 (1), 0)) d ().

~

In our case the actual error rate for dg (2 (r) ;1 (1), 2 (r)) is defined as

P (fix (r) iz (r) = Y m(r) (1.5)
=1

() = 3 )+ 8 () ) (B 1) = 2 (1)) + o)
& | (-1

. o i (r) — in(r)]

where ® is standard normal distribution function.

DEFINITION 1.2. The expectation of the actual error rate with respect to the
distribution of T' denoted as Ep {P" (i1 (), iz (r))} is called the expected er-
ror rate (ER) for the dp (z (r) ; i1 (r) , fi2 (r)) and expected error regret (EER)
is defined by EER = Er-{P"(-,-)} — Pp.

The goal of this paper is to find asymptotic expansions of ER associated
with plug-in LDF for ML and OLS estimators. The case of normally dis-
tributed observations in training sample from the one of two populations with
equal feature vector covariances was considered in [8]. The generalization
for the case of arbitrary number of populations and regular class-conditional
densities has been made in [2]. A similar problem of classifying the spatially
distributed Gaussian observations with constant means is considered in [5].
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In this paper we present the asymptotic expansion up to the order O (N *2),
where N = N; + N,, for the ER of classifying spatially distributed Gaus-
sian observation to one of two populations with different means and common
spatially factorized covariance. Terms of higher order are omitted from the
asymptotic expansion since their contribution is in generally negligible [9].
The ML and OLS estimators of means are used in the plug-in version of the
BCR. A set of calculations for a certain neighbourhood structure and spher-
ical spatial correlation model is performed in order to estimate the plug-in
BCR.

2. MAIN RESULTS

The expectation vector and the covariance matrix of the vectorized trainin
sample Ty defined by T\ = (Zu, ..., Zin,) " are ) = (i (s1) -, (s5,))
and ElV = 02(), respectively, where C; is the spatial correlation matrix of
order N; x Nj, whose af’th element is ¢;ap = ¢(sq —$3), o, =1,..., Ny,
[ = 1,2. Suppose o% and C; are known and B,v is the estimator of 3;, based
on T here 1Y (s) = zf (s) [?l” and v can take the value ML or OLS, [ =1,2.

Nl Nl
Put C7' = (claﬁ), ot = > claﬁ, ESY claﬂ, I =1,2. Let X; be an
a,f=1 B=1
N; x ¢ regressor matrix with j’th column (2;1;,.. .,a:l,Nlj)T, where z7;; =

1‘[7]'(81'),]':1,...,q,i:1,...,Nl,l:].,2.
Lemma 2.1. [1] For | = 1,2 the ML estimator of p (s) based on T is

-1

B (s) =ai (s) (X[CT X)) X[POT T i (s) (2.1)

It is known, that the OLS estimator of yu;(s) based on Tj is
N -1
arts (s) = (s) (X7 X0) " XTIV a (s). (2.2)

It can be easily shown that fij (s) for finite N, I = 1,2, v = ML or OLS,
have known exact distributions

i (s) ~ N (i (s),ar) (2.3)
where

ot = %2 (s) (XTCr X)) ™ i (s) (2.4)

and
—1 —1
a?tS = oz (s) (XIX))  XPOX) (XFX) 2 (s). (2.5)
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For simplicity we omit the superscript r in P"(-,-). Put Ay (s) = iy’ (s) —
wi(s), I = 1,2. Let ¢(-) denotes the standard normal distribution density
3/7?(8) L O (5) 9 (s)
derivatives of P (¥ (r),u% (r)) up to the second order with respect to the
corresponding parameters evaluated at fij’ (s) = i (s), I = 1,2.

Let Ay, (C)) be the largest eigenvalue of C; and X! be the smallest eigenvalue
of XX, 1=1,2.

function. Denote by Pl(l) = the partial

Assumption 1. Assume, that rank (X;) = ¢, for [ = 1,2.
Assumption 2. Suppose, that A (C}) <k, 0 < Ky < o0, for [ =1, 2.
Assumption 3. Suppose, that A} — oo, as N; — oo, for [ = 1,2.

Theorem 2.1. Suppose, that assumptions 1 — 3 hold for training samples T},
T5. Then the asymptotic expansion of the ER for the dp (z (r); uy (), 1% (r)),
where v can take the value ML or OLS, is

Er{P @ (r).35 ()} = > m (r) @ (_A 1)y 1y ((:))) ‘s Al(r)

=1

Ar)  gr)\ =, ( A1) g\’ -
Xm(r)go(— 5 _A(T)>Zal (— > +(_1)IA(7~)>+O(N )-

=1

Proof. Without loss of generality we use the convenient canonical form of
o2 =1, (r) = AL ), po (r) = —% (see, [7]). By a Taylor expansion of the
P (11 (r), =2 (1)), for v = ML or OLS, about the true values of parameters
we have for P = P (u{ (r), 13 (r)):

2
N 1
pP= PB+ZP(1)A P(r) + 3 Z r) ALY (r) + 03,  (2.6)

=1

2
where Pg = Y m (r) ® (—# + (=1 %) and Oj is the third and higher
=1
order terms of Apy (r) and their products. Since P (i (r), s (r)) is mini-
mised at g (r) = (1) %, [ =1,2, then Pl(l) =0.
Using (2.1) - (2.5), for I = 1,2, under the independence of estimators fz; ()
we have E{p} (r)} =0 and

E{(@"" ()"} =af () (XTC7 X0) i (1) (2.7)
E{(ﬁ,OLS (r))2} =2 (r) (XTX) T XTOX (XTX) o (r), (28)
EA{@Y (r) i (n)} = 0. (2.9)
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Since B {7 (1)} = 0, E{ (@"* ()"} =3 (o] (1) (X C7'X0) 0 (1),

—1

B{(@55 )*} =3 (o o) (7 %) P (57 x) T m )

under the assumptions 1-3, we have = (r) ( Fe' X))z (r)=0 (AL,) )
af () (X7 X)X (XTX) T i (r) = 0(3:) , as N = 00, 1= 1,2,
v= ML or OLS. Note, that

P = A((:))‘p (_A(T) g(r) <_A(7“) P g(r)> _

By substituting estimators (2.1) and (2.2) into (2.6), taking the expectation
of the right side of (2.6) and using (2.7) — (2.9), we complete the proof of the
theorem. W

The asymptotic EER for ML and OLS estimators are

AEERy, = QAIT () (_A(r) B g(r)> o
- oML _A(T) _ 1 9(r)
<3 (-552+ ' 4
1

AEERoLs =

~—

A ™ e
% ZGOLS < A(T) + (_1)1 Z((:))) _

These quantities are used for the evaluation of the performance of the LDF.
The comparison of these two asymptotic regrets is given in the example below.

3. EXAMPLE

Here we compare the asymptotic expected error regrets when the ML and OLS
estimators of unknown large-scale-variation (mean) parameters are used. The
results of this comparison are presented in Tab. 1.
Asg an example consider the integer regular 2-dimensional lattice. There are
six observations in the first training sample and nine in the second (Fig.1).
Assume, that the correlation functions are the same for both populations.
Consider the spherical correlation function

h h|?
i (13 14), o<hi<e,
|h|:07

¢ (1h],6) = 3
0, |h| > 0,
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Table 1.

Comparison of the asymptotic expected error regrets (for 71 = 0.4)
A AEERyr, AEERoLs v
0.6 0.1176 0.1305 0.9011
1.0 0.0150 0.0184 0.8143
1.4 0.0171 0.0538 0.3179
1.8 0.0203 0.0868 0.2336
2.2 0.0216 0.1042 0.2071
2.6 0.0209 0.1072 0.1952
3.0 0.0188 0.0994 0.1888
3.4 0.0157 0.0851 0.1849
3.8 0.0124 0.0683 0.1823
4.2 0.0093 0.0516 0.1805
4.6 0.0066 0.0370 0.1791
5.0 0.0045 0.0251 0.1782

for nonnegative 6y, 01, 5. The nugget effect is 6y and the sill is 8y + 6,. For
this model, observations more than 6, units apart are uncorrelated, so the
range is 6.

Agsume, that there is no nugget effect, i.e. 8y = 0. It is obvious from
the Fig. 1 that the appropriate range is 6, = 4.5. [3] suggests represent
mean as a polynomial function of coordinates of a specified order, that is
w (s) = Al (s) A, where A; (s) is a vector of location co-ordinates of the
point s and )\; is a vector of trend surface parameters so that

AIT (5) = (alslaals27 (alsl)2 ) (als2)2 7alslals27 ey (alsl)p (als2)q) ) (31)

where al,al, defines the location of point s, and for [ = 1,2,

N = ()\1(), Aot, A20, Aoz, Al1, .- -, )\pq)T . Let A; be an N; x k matrix with 7’th
column being defined in (3.1), 7 = 1,...,N;, I = 1,2. This is so-called trend
surface model. The sum p + ¢ = k represents the order of the trend surface:
zero-order (p + ¢ = 0) which is the same as the constant mean case; linear
or first-order (p + ¢ = 1) which generates a sloping plane surface; quadratic
or second-order (p + ¢ = 2); cubic or the third-order (p + ¢ = 3), and so on.
Successively higher orders generate surfaces of increasing complexity.

It is easy to see, that the trend surface model could be considered as a
special case of regression model, where X; is replaced with 4;, [ = 1,2. Here
we use the trend surface model for the case £ = 1, as an example.

As it was expected, the AEER);;, and AEERoLs are decreasing when the
distance increases. It is seen from the table that the expansion when the ML
estimator is used is smaller than that obtained by using the OLS estimator.
This difference is insignificant for close populations, however the ML estima-
tor would be especially appropriate for the estimation of parameters, when
populations are more separated.
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Figure 1. The positions of points in training samples

REFERENCES

[1] J. éaltyté. The asymptotic expansion of the expected risk for the LDA of spatially
correlated Gaussian observations. PhD thesis. Klaipéda university, 2001.

[2] K. Ducginskas. An asymptotic analysis of the regret risk in discriminant analysis under
various training schemes. Lith. Math. J., 37(4), 337 — 351, 1997.

[3] R.P. Haining. Spatial Data Analysis in the Social and Environmental Sciences. Cam-
bridge University Press, 1990.

[4] C.R.O. Lawoko and G.J. McLachlan. Discrimination with autocorrelated observations.
Pattern Recognition, 18(2), 145 — 149, 1985.

[5] K.V. Mardia. Spatial discrimination and classification maps. commun. Statist.-Theor.
Meth., 13(18), 2181 — 2197, 1984.

[6] K.V. Mardia and R.J. Marshall. Maximum likelihood estimation of models for residual
covariance and spatial regression. Biometrika, 71, 135 — 146, 1984.

[7] G.J. McLachlan. Discriminant Analysis and Statistical pattern recognition. Wiley&
Sons, 1992.

[8] M. Okamoto. An asymptotic expansion for the distribution of the linear discriminant
function. Ann. Math. Statist., 34, 1286 — 1301, 1963.

[9] M.J. Scherwish. Asymptotic expansions for correct classification rates in discriminant
analysis. The Annals of Statistics, 9(5), 1002 — 1009, 1981.

Dviejuy vidurkio jvertiniy palyginimas tiesinéje erdvéje koreliuoty
Gauso stebéjimy diskriminantinéje analizéje

J. Saltyté, K. Dutinskas

Straipsnyje sprendziamas atsitiktinio Gauso lauko stebéjimy tiesinés diskriminantinés ana-
lizés uzdavinys dviejy klasiy atveju. Gauti pirmos eilé asimptotiniai tikétinos klasifikavi-
mo klaidos skleidiniai atvejui, kai j Bajeso klasifikavimo taisykle istatome maksimalaus
tikétinumo bei empirinj vidurkiy jver¢ius. Atliktas skaitinis asimptotiniy klasifikavimo
klaidy palyginimas tam tikrai kaimynystés schemai bei sferinei koreliacijy funkcijai.



