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ABSTRACT

A model of the Hele-Shaw flow for power-law fluid is proposed. A classical formulation of
the corresponding moving boundary value problem is given.

1. INTRODUCTION

The Hele-Shaw approximation constitutes a well-known approach in the study
of viscous flow problems. The Hele-Shaw flow means the injection/suction of
a viscous fluid into a narrow channel between two closely situated plates. The
fluid is supposed to be surrounded by another fluid of a small viscosity or
even inviscid (i.e., we have the one-phase Stefan problem). In the framework
of this model different situation were discussed intensively (see e.g., [8; 16; 22;
25]). Recently the Hele-Shaw approximation has been used for the study of
flow of non-Newtonian fluids (cf. [3; 9; 10; 12].)
In the Newtonian case the filtration law can be presented in the form

Vo = d(w)

SRS

, w =[], (1.1)

where ¢ is a pressure, o is a velocity field, and the function @ is linear with
respect to w (i.e., (1.1) is the Darcy law). Non-Newtonian behaviour of fluids
leads to different form of nonlinear filtration law. The most investigated case
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is the situation of power-type liquid for which the function ® in (1.1) satisfies
the relation

o (w) = Cw®. (1.2)

The case 0 < s < 1 corresponds to pseudo-plastic behaviour of a fluid, and
the case s > 1 corresponds to dilatant rheological behaviour of a fluid (see
e.g. [12]). Thus the incompressible non-Newtonian (power-law) fluid have to
satisfy the following system

{_W’ = Cw—, (1.3)

V- = 0,

where the second relation is simply the continuity equation. Straightforward
calculations show that (1.3) is equivalent to the system

{ —V¢ = Cw'—, (1.4)
div (|Vg|'/*~1ve) = 0.

Therefore, the pressure inside the domain occupied by the power-law fluid
should be p-harmonic function, i.e. satisfies p-Laplace equation

div (|V¢[P~>Ve¢) =0, (1.5)

with p = 1 4+ 1. The equation (1.5) is a nonlinear elliptic equation for all
1<p<2(ie, for s >1). When p > 2 (i.e.,, 0 < s < 1) this equation
degenerates at all points at which @ = 0.

The p-Laplace equation (1.5) has been studied from different points of view.
We have to mention here the papers [2; 3; 17; 23], and the books [5; 15].

Let us briefly outline the goals of this paper. First we describe a physical
mechanism of the behaviour of non-Newtonian fluid, conditions for which were
formulated above rigorously. Then we recall some properties of p-harmonic
functions. On their base we introduce a concept of "classical solution" to
corresponding moving boundary value problem. We have left proof of local
existence and uniqueness of such solution for the next consideration.

2. DERIVATION OF THE FLOW EQUATION

In this section we recall the derivation of physical model and make correspond-
ing simplifications led us to the Hele-Shaw type approximation. We suppose
first that the non-Newtonian fluid is situated between two large plates sepa-
rated by a narrow gap. The width of the gap we denote 2h supposing that
it is essentially smaller than the scale of the plates. It is customary to con-
sider a fully developed laminar flow far away from possibly existing moving
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boundary. We introduce the system of Cartesian co-ordinates (1,2, x3)
with (x1,x2)-plane lying between the plates 3 = —h, x3 = h. Denote also by
¥ = (v1,v2,v3) the velocity vector of the flow. To derive the model equation
we use the law of the conservation of mass and the law of the conservation of
momentum. The fluid under consideration is supposed to be non-Newtonian
(power-law) and incompressible. The later assumption gives us the continuity
equation in the form

81)1 81)2 8’1}3
A A 2.1
61‘1 61‘2 61‘3 0 ( )

Hence the rate-of-strain tensor D can be presented in the form [21]

61)1 61)1 8’1}2 61}1 61)3

Dot Qv 0w 0w O Ous
o 61'2 61‘1 61‘2 61‘3 61‘2
Ovi | Ovs Dvp | Ovs 0
61'3 61‘1 61‘3 61‘2 61‘3

This tensor is symmetric, satisfies the relation trD = 0, and is insensitive
1
1 n 2
to the rigid-body motion. The invariant (tr(2D : D)?)? = (2 ) d?;) is
=1

denoted by 4 and is commonly used as a scalar measure for the rgte of defor-
mation. The stress equation for non-Newtonian fluid reads T' = 2n(%,T)D,
where T is the deviatoric stress, T is the temperature, and 7 is the viscos-
ity function of the fluid depending in general on the rate of deformation ~
and the temperature T', having a specific form for every fluid. In the case
of isothermal flow (which is assumed to be discussed) the viscosity does not
depend on the temperature, i.e., T/ = 2n(¥)D. Then the total stress tensor
T can be represented in the form

T = —¢I + 25(5)D, (2.2)

where I is the identity tensor, ¢ is the pressure.
The equation of the conservation of momentum can be taken in the form

Dy

pﬁ =divT + pg,

where p is the density, D% is the material derivative, ¥ is the (averaged with

respect to gap’s width) velocity vector, g is the (averaged) gravity.
Applying (2.2) one can get the following form of momentum conservation
law:

—

pﬁ = —V¢ + div (27(4)D) + pg. (2.3)
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If the gravity vector g is potential g = VU, then one can introduce the effective
pressure ¢* = ¢ — pU. Therefore the gravity term can be neglected, and (2.3)
can be rewritten as

p% = —V¢ + div (2n(¥)D). (2.4)
In the case of power-law liquid its viscosity 71 is supposed to satisfy the relation
n(¥) = K41, where K > 0 is called the consistency index, s > 0 is called
power-law index. Both magnitudes are material constants [4; 12].

Let us now propose certain assumptions to simplify the considered model.
These conditions seems to be natural and are close to that from [2; 3].

e (i) suppose from now on that the flow is parallel to z; z5-plane. It is natural
to assume that the "area" occupied by the fluid is essentially larger than
the width between the plates. In this case z3-component of the viscosity
forces can be also neglected;

e (i) inertia and body forces are supposed to be essentially smaller than
viscosity forces and pressure difference. Thus % =01in (2.4);

e (iii) the thickness of the gap is small and no-slip conditions on z3 = +h are
presumed. Hence the derivatives of v; and v in the direction of z3-axes is
much bigger than those in z;- and z»-directions.

Applying these assumptions to our system (2.1)-(2.4) we obtain the follow-
ing description of "pure" plane non-Newtonian flow:

divi = 0, V¢ = div (2n(¥)D), (2.5)

where (cf. assumption (1)) 7 = (v;,2,), v; = 3¢ ffh vi(z1, 20, x3)drs, i = 1,2;

9¢

— =0, and
s , an
0
0 o
1 Jes oo \® [0
v v v
D=-| 0 0 =— |,i=/{7) +(52) -
2 0r3 Oxs O3
v v
8:173 8563
Due to symmetry of the flow with respect to z3 = 0 we have n(%) g;’; =
g—im,i = 1,2. Therefore from the no-slip condition on 3 = +h we obtain
vy = —g—i%, Vy = —g—i%, with S = foh %d(. Then the continuity equation

(2.5) becomes

o (.00 o (.00
B <Sa_xl> . ( a—@) =0. (2.6)



Hele-Shaw flow for power-law fluid. Classical solution 163

In the case of a power-law fluid it follows from (2.4), (2.6) that ¥ = L?il) Vo
Hence n = K+ |23V¢|' =+, § = C|V¢|'~+. Therefore the continuity equation
for power-law fluid is in fact p-Laplace equation (cf. (1.5))

div (|Vo[P~>V¢) =0, (2.7)

with p = % + 1. In what follows we restrict our attention to the case p > 2,
i.e. on the pseudo-plastic flow.

Let us now describe the mathematical model of the discussed physical
model. Let € be a bounded plane domain containing origin. Let us ad-
ditionally supposed that the boundary I' of Q consists of finite number of
smooth curves. Let p # 0 be a finite positive measure with compact support
in . We consider the plane domain D such that supp p CC D C Q. It
means that the supp p is compactly embedded into D, but 9D and 92 can
have nonempty intersection. Let us denote I'g := 9D NQ, Ty := 0D NI,
and both sets consists of finite number of smooth arcs.

It is supposed that the non-Newtonian fluid is injected through the "bor-
der” of the domain supp pu (in particular through a number of point sources).
At certain moment the fluid occupies the domain D. T’y is then an unknown
free boundary (moving front of the fluid), and T'y is an impermeable wall. The
flow is supposed to be isothermal (cf. [9; 10; 22]). Different type of boundary
conditions are posed on I’y and I';. On I'y there exists no normal flow (im-
permeable wall). It means % =0 on TI'i. On the moving boundary I'y we
have surface-tension condition since the rest of the Hele-Shaw cell (i.e. the
rest of the domain ) is supposed to be filled in by the fluid of essentially
smaller viscosity, or even by the air. Without loss of generality one can sup-
pose ¢ =0 on Ty. At last there is a kinematic condition on I'g which follows
from the mass balance. It appears when T'g is moving. It reads that the fluid
velocity of a particle at Iy should coincide with the velocity of this "point"

as a geometric object, i.e. 7= —%|Vg[P~2Ve = 2o

3. STATIONARY PROBLEM

Here we discuss the stationary formulation of our problem. Our concern
is connected with the following three facts. First of all, the basic equation
describing the behaviour of the fluid in the domain is a monlinear partial
differential equation. Second, the topology of the moving boundary T’y can be
changed in accordance with the given configuration of the Hele-Shaw cell. At
last, the moving boundary is defined not only by the fluid’s properties but
also by the geometry of the given domain (2, as well as by the geometry of the
given nonlocal source wy = supp p.

In order to restrict our attention on analytical problems we study only local
in time formulation of conception of a classical solution.

Let as before Q be a given (bounded or not) open plane domain with the
piece-wise smooth boundary 0. Let p # 0 be a given finite positive measure
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with compact support containing in Q. Denote by D a domain satisfying the
inclusion wp := supp p C D C 2 and introduce the function ¢p as a solution
of the following boundary value problem:

—div (|[Vép[P~*V¢p) =p in D, (3.1)
¢p =0 on I'o =0DNAQ, (3.2)
|V¢D|p*266¢;nll) =0 on I' =0DNN. (3.3)

The boundary condition (3.3) can be rewritten in the form

61/J—D:0 on I'y =9DNQ,
or

where 1p is so called p-harmonic conjugate to ¢p, i.e. the function connected
with ¢p by the relation

awD _ p—2 6¢D
8271 - ¢ |V¢D| 8272 )
8"/117 _ 1 p—2 8¢D
61‘2 = ¢ |V¢D| 61‘1 '

We note that in the case of the finite number of sources (in particular, one
n

source) the measure p in (3.1) can be taken in the form ) ¢jdp, where 0y is

k=1

the Dirac measure at the points (z1(k), z2(k)) € Q. For p = 2 it is known [19]
that for any piece-wise smooth domain there exists a unique solution to the
problem (3.1)-(3.3) which is in fact the solution of a mixed boundary value
problem for harmonic functions. The only additional assumption is that the
linear measure of 'y is not equal to zero. The boundary condition (3.2) on Ty
should be understood in this case in the following way: for each € > 0 there
exists a compact set K C D such that |¢p| < on D\ K.

For certain simple domains the corresponding solution to mixed problem
(3.1)-(3.3) for p = 2 can be presented in closed form [18]. For more general
domains the conformal mapping technique can be applied.

Another remark is connected with the following: the arcs 'y and I'; meet
each other in general not in a smooth way. The same is true for I'x := 0K ND
and [';. To avoid this difficulty one can use the standard balayage approach
[6]. We first fix the value of & > 0 and the corresponding compact domain
K.. Then on I'k_ the boundary values of ¢p are equal to a.(t), ¢t € Tk,
where |a-(t)] = €, ac € C?. This function can be continuously extended
into the streep {(z1,22) € K. : p((z1,22);Tk.) < b}. Then there exists a
sequence of domains Dj, D; C djy1, U; D; = K. such that their boundaries
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are smooth curves. Then it is known that for any given continuous arc 'k,
the corresponding solution of the problem

_A¢&‘ = :ug
8¢<;|Dj = o= A€|Dj’
on Ir 0

converges to the solution of problem (3.1)-(3.3) in the domain K in the case
p=2.

We use the above discussed considerations in the next sections. As for
the case p # 2 the situation with the solvability of problem (3.1)-(3.3) is
more complicated. Therefore we need to recall some properties of p-harmonic
functions to formulate the corresponding results.

4. PROPERTIES OF P-HARMONIC FUNCTIONS

There are two meaning of p-harmonic functions. First one (classical p-harmonic
functions) is the following: for a given plane domain D any function ¢ €
C%2(D), V¢ # 0 in D satisfying the nonlinear differential equation

div (|Ve|" V) =0 (4.1)

for a given p € (1,00) is called p-harmonic function in the domain D. The
crucial things determined the behavior of p-harmonic functions are their sin-
gular points, i.e. the points of D at which V¢ = 0. It is known [2] that in
a neighbourhood of any internal point of D at which V¢ # 0 the solution of
(4.1) belongs even to C*°. But near singular point its behaviour is less regu-
lar. The highest level of regularity one can prove is Clko’f(D), where an integer
number k£ > 1 and a real number « € (0, 1] are determined by the equation
17]

k-l-oz:é(7+1/(p—1)+\/1+14/(p—1)+1/(p—1)2).

In [1; 17] some examples are presented showing that for p # 2 the above
described class is an optimal one. It should be noted that singular points of
p-harmonic functions in two-dimensional case are isolated points.

As in classical case p = 2 of harmonic functions it is possible to introduce
for any p # 2 a function 1 dual to a p-harmonic function ¢ via relations

z1 = -V b2 T2
{Z Vop g (4.2)

This function has the properties of stream function for the solution of (4.1)
and does satisfy the equation

div (|v¢|1”—2v¢) —0,
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where p’ € (l,oo),% + i =1, i.e. ¢ is p’-harmonic function in D (cf. [3]).
Another family of classical solutions to (4.1) (so called spiral solutions) is
described in [3].

Introducing a complex p-potential w = ¢ + 0 and using the standard
notation for the formal complex derivatives (cf. e.g. [11]) one can rewrite

(4.2) in the form of complex p-Cauchy-Riemann equations

— _ p
{wz—wz = (w, +w,)? (ws +
yd

w

The later equations can be rewritten as a nonlinear analog of Beltrami equa-
tions (see e.g., [20]).

Another meaning of p-harmonic functions (weak p-harmonic functions) is
the following: these are any nonnegative weak solution ¢ € W,'P(D) of the
equation

/|V¢|P*2<v¢, Vip)dzidey =0, Vi € Wol’p' (D).
D

5. ON CLASSICAL FORMULATION OF THE EVOLUTION-
ARY PROBLEM FOR THE HELE-SHAW FLOW OF NON-
NEWTONIAN FLUID

Our purpose here is to describe the classical type Hele-Shaw model for non-
Newtonean fluid. We use here the notation presented in Sec. 2. As it was
already mentioned the geometry of the domain plays an important role in our
considerations. Therefore, we assume for simplicity that the curve I'g (moving
front of the flow) consists of the only one simple Jordan arc.

Let Q be a fixed plane domain as before, and w be a fixed open neigh-
bourhood of the domain wy = supp i and the set S, o be a class of simply
connected domains D such that wg C w CC D C 2, such that 'y = 9D NQ
is an open simple Jordan arc of class C2.

Let there exists a function ¢p satisfied the system of equations (3.1)-(3.3)
(the solution of stationary problem). Let us suppose also that this solution
can be continuously extended up to I'g. Let I C R be an open interval.

DEFINITION 5.1. A map I 5 ¢t — D; € S, is called a (local in time on
I) classical solution to the Hele-Shaw moving boundary value problem for a
non-Newtonian fluid if there exists a map ¢ : (0,1) x I — R? of class C? such
that

e (i) ((s,t) € Ty, for all s,t;

e (ii) for any fixed ¢ € T the function ((+,t) is a diffeomorphism of class C2

on the interval (0,1);

o (iii) 25(s,t) = — |V, |" > Vo, |¢(s,r) for all s,t.
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We have to note (cf. [14]) that conditions (i), (ii) mean that for each ¢ the
function ((-, t) parameterizes the moving arc I'y ;. The condition (iii) says that
the point ((s,t) moves with the velocity — |Vép, (C(s, )" > Vén, (((s, 1)),
where V¢p, means a continuous extension of the gradient Vop, to I'g+.

We have to stress once more that the above definition is in any case only
local in time because of possible changing of topology of the curve Iy ;. Global
variant of this definition can appear only in sense of life-time estimate of
certain topologically stable situation, say e.g. an estimate of the length of
time-interval I such that for each ¢ € I the curve ['y; consists of the same
(finite) number of open arcs. It should be noted also that instability appears
either at the physical modelling of the flow (e.g. as in [13]) or at its numerical
analysis [2; 3].

Let us make a remark also about the measure p. As in [14] (cf. also [7; 24])
at the solving the problem in the classical sense one can always suppose that
1 is a smooth function. It can be shown by using mollification technique. It is
natural to suppose it because the only behavior of ¢p near the moving front
has an influence in the above formulated definition. Therefore the function
¢p can be smoothed in a neighbourhood of supp p. Hence p itself can be
supposed to be smooth.
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Hele-Shaw uZdavinio ne-Niutono skysé¢iams klasikinis formulavimas
S.V. Rogosin

Pasiulytas naujas ne-Niutono skysciy tekéjimo modelis. Pateiktas klasikinis formulavimas
uzdavinio, sprendziamo srityse su laisvai judanc¢iu pavirSiumi. Sprendinio egzistencijos ir
vienaties klausimai bus tiriami kitame darbe.



