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ABSTRACT

This paper is dedicated to problems connected with an anisotropic adaptation used for
simulation of compressible flows with FVM solver. The adaptation is based on error indi-
cator defined by 2D interpolation error. The comparison between isotropic and anisotropic
adaptation is shown for typical test case of supersonic flow in a channel.

1. INTRODUCTION

Adaptation of a grid is a very powerful tool for optimization of flow calcula-
tions in both cost and memory usage. Many implementations are based on ad
hoc ideas which do not take into account a directional properties of a solution.

The anisotropic adaptation has been first presented in [1; 2; 5; 6]. This
technique is more powerful because grid is refined only in direction which
demands better resolution. As it will be shown in the paper, it is possible to
create a grid with smaller number of grid nodes than with isotropic adaptation,
keeping the error of the solution at the similar level.

The error indicator used for adaptation follows algorithms presented in [1;
5]. Generation of the new grid is based on an original algorithm which uses
an anisotropic Delaunay triangulation of a set of new points obtained from
modifications of the grid from the previous adaptation step. To avoid solver
problems when dealing with very thin triangles present in anisotropic meshes
the author uses Finite Volume Method coupled with the WENO (Weighted
Essentially Non-Oscillatory) reconstruction [4].
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2. ADAPTATION ALGORITHM

Adaptation algorithm can be described in the following way:

1. Generate initial grid G¥(k = 0) which may not reflect any flow features
yet.

2. Solve equations on the grid G*.

3. Check the criterion to stop the adaptation loop (e.g., number of grid nodes
between G* and G*~! does not vary significantly). If this criterion is
satisfied, adaptation loop is finished.

4. Calculate the metric tensor M (x) in the flow domain using error estimator
based on 2D interpolation error for G*¥. The metric is stored in a discrete
way at each node of grid G*. This, by means of interpolation, allows us to
find the value of M at any point of the flow domain.

5. Generate a new grid G¥*! in a Riemann space with the metric defined in
the point 4.

6. Return to point 2 setting k + k + 1.

3. CALCULATION OF THE METRIC

Computation of the metric is based on the estimation of the interpolation
error. For linear interpolation this error is proportional to a second derivative
of an adapted function u.

Assume that E denotes a grid cell inside which a function u is being inter-
polated and x. is the center of E. Then after dropping terms of higher order,
the interpolation error for E can be estimated as [5]:

e < max | (x = xo) T[H](x = x)|. (3.1)
where H is a Hessian of wu:
82_u 0*u
H=| 9 91y | _RAR (3.2)
ordy  Oy?

The Hessian is symmetric, therefore it has real eigenvalues A; and A». Matrix
R consists of columns created from right eigenvectors of H and A is a diagonal
matrix consisting of corresponding eigenvalues \;. Consequently |H| can be
defined as:

H - R R . 3.
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The interpolation error in a given direction is defined by a unit vector w,
which is proportional to a constant C' calculated as follows:

C=h>w'|H|w, (3.4)

where h denotes a length of a cell in the direction w. In the present approach
w becomes a direction of a given edge and h becomes an edge length. Con-
struction of an optimal grid is based on equidistribution of an interpolation
error. This is equivalent to assuming that for every edge e;, the constant C;
is equal to a global C'. We introduce a scaled metric M:

M=C™' H|. (3.5)

Calculation of edge length can be then performed with metric defined by
(3.5). Grid should be constructed so that all all edges e; have unitary lengths
calculated from the formula:

h=1/e] Me;. (3.6)

Function u used for adaptation is given in a discrete manner. Values of u are
known only at cells centers. The calculation of a metric based on a Hessian of
u is not a trivial task. Different approaches can be used, e.g., based on Green’s
formula. In this paper the approach based on the least squares method. The
full algorithm of computation of the metric can be presented as follows:

1. Calculation of Vu at grid nodes with the least squares method [3].
2. Calculation of H = V(Vu) at grid nodes with the least square method [3].
3. Calculation of M using equation (3.5).

4. Limiting the metric with prescribed values defining maximum and mini-
mum sizes of edge length (A and hiae )-

The metric tensor is subsequently extended to the whole domain using simple
linear interpolation [5].

4. ALGORITHMS FOR GENERATION OF A NEW GRID

Once the metric is defined, the grid can be created in various ways (e.g., it
can be generated from a scratch by using anisotropic Delaunay triangulation).
In the presented implementation, a new grid is created by modification of the
grid from previous adaptation step, enabling refinement and coarsening of the
grid.
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4.1. Refinement of the grid

Refinement of the grid is equivalent to inserting new nodes in areas where
estimated error is too big. In the present implementation it is necessary
to define a threshold value h, .. used for comparison of edge length dq
calculated in the Riemann space. If a given edge satisfies

dpm > h (4.1)

Pmaz>
then a new node is introduced in the middle point of this edge. The node is
inserted into a list of all nodes of the new grid. If the given edge is a part of
the curved boundary, position of the new point must be corrected to allow for
proper representation of the boundary.

4.2. Coarsening of the grid

Coarsening of the grid allows to remove nodes from areas where grid is too
dense according to the error estimator. In the present implementation it is
necessary to define a threshold value h,, ;. used for comparison of edge lengths
daq calculated in the Riemann space. If a specified number of edges connected
to a given node satisfies

dpm < h (4.2)

Pmin

then the node is removed from a list of all nodes of the new grid.

4.3. Grid smoothing

Threshold values hy_,, < h are chosen both close to 1. When h
is decreased more nodes are created during refining phase. When h,, _, is
increased more nodes are removed during coarsening phase. Once the refining
and coarsening is finished a list of nodes of the new grid is created. All nodes
from this list are connected using anisotropic Delaunay triangulation.

The last step consists in grid smoothing. The smoothing uses the algorithm
based on spring analogy, in which every edge is treated as a spring connected to
two nodes. The boundary nodes are allowed to move only along the boundary.

The iterative algorithm is used to find the new equilibrium of the system [5].
5. NUMERICAL RESULTS

Pmax Pmaz

5.1. Supersonic flow in 15° wedge channel

The performance of the adaptation algorithm is presented for supersonic flow
in a channel with a 15° wedge. Flow at the inlet is of Mach number 2. The
structure of the flow is dominated by system of oblique shock waves and
expansion fans. Near the top wall of the channel a slip line emerging from a
triple Mach point can be seen. This is a very demanding test since shock waves
form strong discontinuity in the solution and locally high level of refinement
is required.
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Figure 1. Grids used for calculation of supersonic flow in the channel with
15%: (hppmas =~ 1.4, hp_ . =~ 0.8). a) initial grid (1300 nodes). b) grid after
15t adaptation (1400 nodes). c) grid after 10t" and last adaptation (7700
nodes).

The flow solver was based on 2D Euler Finite Volume cell-centered method
supplemented with WENO reconstruction [4]. The estimated error of the
Mach number field was used as an adaptation function. Fig. 1 shows grids
used in calculations and Fig. 2 shows corresponding Mach number fields. It
is clearly visible that adaptation results in big improvement of the solution at
quite reasonable cost.

5.2. Comparison of isotropic and anisotropic adaptation

This test case was chosen for direct comparison between isotropic and aniso-
tropic adaptation. Calculations for both cases were performed with the same
adaptation tool. In the isotropic case the metric tensor M was calculated
from the same formulas (3.3) — (3.6) with both eigenvalues equal to:

max (|A1], |A2] ). (5.1)
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Figure 2. Mach number field for grids shown at Fig. 1 for supersonic flow in
the channel with 15°: a) calculated using initial grid, b) calculated using grid
after 15¢ adaptation, c) calculated using grid after 10?" and last adaptation.

Three adaptation steps were performed both for isotropic and anisotropic
cases. The grids after third adaptation for both cases are shown in Fig. 3 and
corresponding Mach number fields are presented in Fig. 4. Details of the grids
are presented in Fig. 5.

The Mach number fields obtained on both grids are almost identical. The
isotropic grid consists of 28078 nodes while anisotropic one of 6403. In this
case the use of anisotropic grid resulted in fourfold reduction of the computing
time and memory usage. It is expected that this gain should be even larger
for 3D cases.

6. CONCLUSIONS

It was shown in the paper that anisotropic adaptation is a useful tool to im-
prove quality of the numerical solution. Compared with isotropic adaptation
the anisotropic adaptation results in much smaller number of grid nodes, re-
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Figure 3. Comparison of isotropic and anisotropic adaptation.
a) grid after third isotropic adaptation (28078 grid nodes).
b) grid after third anisotropic adaptation - (6403 grid nodes).

Figure 4. Comparison of isotropic and anisotropic adaptation.
a) Mach number field for grid after third isotropic adaptation.
b) Mach number field for grid after third anisotropic adaptation.
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Figure 5. Comparison of isotropic and anisotropic adaptation - details of the grids. Figures
on the left present details of the grid after isotropic adaptation and on the right after
anisotropic adaptation: a) in the area of the bottom reflection of the oblique shock wave,
b) in the area of the top reflection of the oblique shock wave and triple Mach point.

ducing significantly the overall computational effort. The algorithm can be
extended to 3D cases in relatively easy manner.
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Suspaudziamuy skysé¢iy judéjimo modeliavimas naudojant anizotropinj
adaptyvuma

J. Majewski

Darbe pasiulyta nauja metodika, leidzianti sudaryti anizotropinj adaptyvujj tinkla. Jame
elementai smulkinami tik viena kryptimi. Dvimatis paklaidos indikatorius yra sudarytas

remiantis aproksimacijos paklaidos jverc¢iu. Pateikti skai¢iavimo eksperimento rezultatai,
kuriame palyginti izotropiniai ir anizotropiniai tinklai.



