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ABSTRACT

In this note we consider the mathematical model of the isothermal compressible fluid flow in
an exterior domain Q@ C R3. In order to solve this problem we apply a decomposition scheme
and reduce the nonlinear problem to an operator equation with a contraction operator. After
the decomposition the nonlinear problem splits into three linear problems: Neumann-like
problem, modified Stokes problem and transport equation. These linear problems are solved
in weighted function spaces with detached asymptotics.

1. INTRODUCTION

In this note we study the asymptotic behaviour of steady solutions to equa-
tions describing an isothermal motion of compressible viscous fluid in an ex-
terior domain Q C R?, i.e. is an open set, exterior to a compact set B C R®
with a sufficiently smooth boundary 9€2. Moreover, we suppose that the inte-
rior of B is non-empty and contains the origin of coordinates. In Q2 we consider
the classical Poisson-Stokes equations for unknown functions p (density) and
v = (v1,v9,v3) (velocity):

— AV = (g + p2)Vdivv + Vp = pb — p(v - V)v, x € Q,
div(pv) =0, =z €Q, (1.1)
v=0, =€

Here puy, o are constant coefficients of shear and bulk viscosities satisfying
the conditions

2
p >0, p2 2 =g (1.2)

I This work was supported by Lithuanian State Science and Foundation grant A-524.
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and b is a density of external forces. We assume that b is a "small" pertur-
bation of a "large" potential force, i.e. that b has the form

b=V®+f, (1.3)

where ® is a potential which can be (as well as its derivatives) arbitrary
"large" and f is a "small" perturbation of V.

Since the flow domain € is unbounded, the equations (1.1) are supplied
with the conditions at infinity. We assume that the velocity field v tends
at infinity to zero and the density p to a constant density and prescribe the
following conditions

v(z) =0, p(x) = pe, ps«=-const>0, [z|]— 0. (1.4)

The exact solution (pg,vo) of problem (1.1), (1.4) corresponding to the po-
tential force V@ (i.e. £ = 0) is the rest state (po,0), where po satisfies the
equation

Vpo = poVO. (1.5)
If ®(z) — 0 as |z| = oo, from (1.4), (1.5) we find po(x) = p.exp ®(z). The

equations for the perturbation (¢ = p — pg, v) have the form

— AV — (1 + p2)Vdivv + Vo —oV® = F(o,v), =z € Q,
div (pov) = —div(ov), z € Q,

v=0, z€o0, (1.6)
v(z) =50, o(z) =0, |z|]— oo,
where
F(o,v) =—(po+0)(v-V)v+ (po +o)f. (1.7)

A possible linearization of the system (1.6) near the equilibrium state (po,0)
reads

— AV — (g + p2)Vdivv + Vo —oVE =F, z € Q,
div (pov) = —div (ow), =z € Q, (1.8)
v=0, z€9Q, v(z)—=0, o(x)—=0, [z]—= o0,

where o, v are unknown, while F, w are given.

The solvability of problem (1.1) — (1.4) was studied in [11] using a different
decomposition scheme and the techniques due to Matsumura, Nishida [1].
Moreover, in [11] were obtained decay estimates for the solution (p = pp+0, v)
of (1.1) — (1.4). In particular, it is shown that the solution is "physically
reasonable", i.e. v(z) = O(|z|™'), Vv(z) = O(|z|7?), o(z) = O(|z]?).
However, the analysis of [11], based on the integral representation formula for
the Stokes problem and estimates of weakly singular integrals appearing in
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this representation, does not provide optimal decay rates for the higher order
derivatives of the solution. Furthermore, with this method one cannot specify
the asymptotic behaviour of the solution as |z| — oo.

In this note in order to investigate the solution of problem (1.1) — (1.4)
we employ methods related with the application of weighted function spaces
(e.g. [2; 8]). However, already the Navier-Stokes equations of the incom-
pressible fluid motion are not solvable in classical weighted Sobolev (Holder)
spaces while considering the convective term (v -V)v as a perturbation of the
Stokes problem. On the other hand, if we study these equations in function
spaces which elements take suitable asymptotic forms (i.e. the elements are
defined as a sum of two parts one of which contains the main asymptotic
term and another one belongs to the usual weighted space), then the Navier-
Stokes problem is well-posed (see [6; 7]). We also refer to [3], [4; 5; 10] where
such weighted spaces with detached asymptotics were successfully applied to
study Navier-Stokes equations in other unbounded domains and to [9] were
the spaces with detached asymptotic were applied to study viscoelastic flows
in an exterior domain.

In order to solve the linearized problem (1.8) and the nonlinear problem
(1.1), we apply the decomposition scheme proposed in [12] (see also the refe-
rences in [12] for the original application of the similar decomposition scheme
to steady compressible Navier-Stokes equations linearized on a constant den-
sity).

In this note we present only the general scheme and the main idea of the
proof for the solvability of problem (1.1) (the complete proofs will be published
separatly).

The authors are grateful to Professor S.A. Nazarov for the useful discus-
sions.

2. DECOMPOSITION SCHEME

We will consider a slightly more general than (1.8) system

—m AV — (g + p2)Vdivv + Vo —oVE =F, z € Q,
div (pov) = —div(ow) + g, =€ Q, (2.1)
v=0, z€9dQ, v(z)—=0, o(x)—=0, |[z]— o0,

where g is given.

We represent the velocity field v as a sum v = u+ V¢, where the functions
u and ¢ satisfy the conditions div(ppu) =0, x € Q; u-n =0, x € 99,
and g—ﬁ =0, x € 00. Then the system (2.1) splits into the following three
simpler problems:

2.2
a—80:0, r e, ¢(x)—0, |z]— o0, (22)

{ App = —div(ow) +g, x€Q,
on
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—mAu = (1 + p2)Vdiva + poV(II/po) = G, =z € Q,
div (pou) =0, =z € Q,

u=—-Vp, z€0Q, (2:3)
u(z) =0, H(z)—=0, |z]— oo,
o+ (21 + o) div (ﬂ) =1, z€Q, (2.4)
Po
where
G =F + (21 + p2)V(py Vo - wo) = (2u1 + p2)Vpy Vo - Vo) (2.5)

— (2p1 + p2)py ' Vo div (Up—‘:) +(2m + M)V(%)-

The solution (o, v) of the problem (2.1) can be found as a fixed point of the
linear mapping

L:Tr—0 (2.6)

which we define in the following way:
(a) for given 7 we find ¢ by solving the Neumann problem (2.2);

(b) next we find the solution (u,II) of the Stokes-type problem (2.3) using
(2.5) with o = T

(c) finally, we find o from the transport equation (2.4).

3. SOLVABILITY OF THE AUXILIARY PROBLEMS

3.1. Function spaces

e C°°(Q) is the set of all infinitely differentiable in Q functions; C§°(2) is the
subset of functions from C'*°(Q2) having compact supports in Q; C§°(Q2) is the
set of functions from C'*°(Q) which are equal to zero in the neighborhood of

infinity, i.e. for sufficiently large |z| (but not necessary on 0€2).

e WH(Q), 1 >0, q € (1,00), is the usual Sobolev space and W4(Q) is the
closure of C§°(€) in the norm ||-; Wh4(Q)||; L1(Q) = W%(Q).

e Let S? be a unit sphere in R®. WH54(S?) — Sobolev space of functions
defined on S2. )

° Vé’q(ﬂ), 1>0,qge (1,00), B €R, is the closure of C§°(12) in the weighted
norm

[ws Vet @l = 3 (=1~ *1D%; L@,

le| <t

where a= (a1, as, as), D*= 6'“‘/637?16333263:3‘3, a; >0, |a|=01+ar+as.
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° Ag‘s (Q) is the weighted Holder space defined as the closure of C§°(Q) in
the norm

||u;Al’5 )l _l )] S“g (|m|6 L=d+lal | pagy( )|)

+ £ sp{lal® swp (jo =41~ |D2ute) - Djut]) |
la|=t z€9 ogl<lol/2

e 09(Q),1>0,q€ (1,00), 58 >,k € Z,v € (I1-3/q+k, [+1-3/q+k),
is the weighted Sobolev space with detached asymptotics, i.e. the space of
functions admiting the asymptotic representation

u(z) = r*UB) + (z), (3.1)

where r = |z|, § € 82 e W4(S?), u e V(). The norm in m(v’;,j“(ﬂ) is
defined by |u; Q](l DU = | WS + || Vhi(Q |-
Functions Y and w are called the attributes of u € Q]g:,j)’q(ﬁ).

3.2. Neumann problem

Let us consider the Neumann problem for the operator A,, = div (po(z)A),

141,06
where po(z) = p.exp ®(z), ®(z) € AJLHW(Q), Yo > 1:

_APOSO =¢, v,
{ 52

8_520, zed, ¢(x)—=0, x| o0

Theorem 3.1. Let ) € Vvl_l’q(ﬂ), 1>1, g>1, ve(l+2-3/q,14+3-3/q).
Then problem (3.2) has a unique solution @ which admits the asymptotic rep-
resentation p(r) = cq - 2ﬂm‘ + @(z) with € VIT19(Q). There holds the
estimate

[V 1@ + leol < e[ V1@
The proof of Theorem 3.1 can be found in [§].

3.3. Stokes and modified "Stokes" problems
Let us consider first the Stokes problem
—vAu+Vp=f£f, =zx€Q,

divu=g, =z€Q, (3.3)
u=h, €N
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We study problem (3.3) in weighted Sobolev spaces with detached asymp-
totics. Denote

DLV (Q) = ViTHI(Q) x VU(Q),

RGIV(Q) = Vi~11(Q) x VEI(Q) x WHHH21(90),
Dhasg() = BT (Q) x wh (@),

RE#D(Q) = 05510(@) x B, (@) x W00 (90)

withl > 1, g € (1, 00), B € R, v € (I1+2-3/q, I+3-3/q). Let S;: D1V (Q)
RlB’qV(Q) be the operator of the Stokes problem (3.3). There holds the fol-
lowing statements.

Theorem 3.2. (see [7;6]) (i) If B € (1+1-3/q, 1+2—3/q), then the mapping
(u,p) — (f,9,h) = Sé’q(u,p) s an isomorphism.
(ii) Let (f,9,h) € RLIV(Q) C RV (Q) with

ye(l+2-3/q,1+3-3/q). (3.4)

Then the solution (u,p) € ngV(Q) admits the asymptotic representation
(w,p) = (u,5°) + (&L, B), where (&L,5) € DLIV(Q) and (u,p°) = bED +
boE?) +bsEG) | with EY) denoting the j-th column of the fundamental matriz

for the Stokes operator in R® and b; € R, j = 1,2,3. Moreover, there holds
the estimate

10, 5); DYV Q)| + [ba| + [b2] + [bs| < cl|(F,g,h); RETV (D).

Remark 3.1. The columns of the fundamental matriz for the Stokes operator
in R® are defined by EV)(z) = ﬁ (6,117 + z12, 8jo|2|* + 2275, 0j3|2|? +

~ 8mv
T3Tj, 21/a:j)T,j =1,2,3.

Theorem 3.3. (see [7; 6]). Let (f,g,h) € RLIBV(Q) with v satisfying (3.4).

Then problem (3.3) has a solution (u,p) € DLIB(Q) if and only if there holds
the compatibility condition

/ 3(6)dsy =0, (3.5)
SZ

where (), f are the attributes of the function f in representation (3.1). The
solution is unique and there holds the estimate

[(u,p); DLIB(Q)|| < c||(£, 9,h); RLIB(Q)].
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Let us consider now the following "modified Stokes" problem

—mAu = (py + p2)Vdiva + poV(Il/po) = £, =z €Q,
div (pou) =g, z€9Q, (3.6)
u=h, z€99Q,

where po(z) = p.exp (®(z)), ® € A;EfH%(Q), 7% > 1.

Theorem 3.4. Let (f,g,h) € RQQW(Q), 1>1,q€[6/5,0), yeE(l+2-

3/q, 1+3—3/q) and let §(0) satisfies the compatibility condition /S(H)ds(; =0.
S2

Then problem (3.6) has a unique solution (u,II) € DLIU(Q). There holds the

estimate ||(u,I1); DLIB(Q)|| < c||f, g, h); RLID(Q)|.

The proof of Theorem 3.4 consists from several steps. First, we consider the
case h = 0 and prove the existence of a weak solution (u, IT) € V;?(Q) x L?(Q)
of the problem (3.6) satisfying the equation div(ppu) = ¢ and the integral
identity

m/Vu:Vndx-l-(ul +,u2)/divudivnda:—/pO_IHdiv(pon) dz
Q Q Q
= /f-nda:, vn € V2 (Q).
Q

Second, we write (3.6) in the form

— i Au+ VIT = f + pg ' VoIl — (1 + p2)V(pg *Vpo - u), z€Q,
divu=g—p;'Vpy-u, z€Q,
u=h, x¢€dQ

and consider (u,II) € V;"?(Q) x L?(Q) as a solution of the Stokes problem
(3.3) with the right-hand side

fi =fF+ TV — (g + p2)V(V® - 1),
g1=9g—V®-u,
h =0

(remember that V& = p,'Vpo). Using results on the Stokes problem (see
Theorems 3.2, 3.3) and bootstrapping arguments we prove Theorem 3.4 in the
case of homogeneous boundary conditions (i.e., when h = 0). Note that boot-
straping arguments are based on the following embedding results for weighted
function spaces:
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Lemma 3.1. Let u € Vﬁl’q(ﬂ).
(i) If gl < 3 with ¢ < s < 3q/(3 — ql), then u € Vo ’l 3/s+3/q( ) and

1 V5" s pmras @ < s V31 @)
(i2) If gl >3 and m+6 <1 —3/q with 6 € (0,1), then u € Am+6+6 1+3/4()
L
and [|us A5 o res gD < e s V3]
Lemma 3.2. Let v € A;Efﬂﬁl Q).
(i) If u El Ifg: 1(Q), m <T+1, then vu € V5" (Q) and |vu; Vs, ( )| <
e flvs M s o (O lus VE ]
(ii) Ifu € A’ (Q), m < 1+1, then vu € A0 (Q) and
o A @ < el ATy, @I sAZ @) 1)

Finally, the problem (3.6) with nonhomogeneous boundary conditions is
reduced to one with h = 0 by using the extension operator.

3.4. Transport equation

Let us consider the transport equation
z+div(wz) =h, x€Q, (3.8)
where w satisfies the condition
w-n=0, z¢€od. (3.9)

Here we need results concerning the solvability of (3.8), (3.9) in weighted
Sobolev spaces with detached asymptotics.

Theorem 3.5. Let h € B4 ™)7(Q) with 1 > 2, ¢ > 3/2, v € (1+2-3/q, [+
3—-3/q) and let w € Q]gfl +2)’q(ﬂ). There exists a number eg > 0 such that
if

s 51440

’(Y )|§507

then problem (3.8), (3.9) has just one solution z with z € %gl,’é“)’q(ﬁ),
div (wz) € V9(Q). There holds the estimate

|| Q](l ). || + ||d1v (wz); Vl’q || < c||h Q](l [+1).q (Q)”
Furthermore, Az € Qi(l 20-1), (), Adiv(wz) € VI729(Q) and

||A Q](l 2i-1) ’q ||+||Ad1v (wz) Vl 2a(0) ||
<c (||h v Hl D + [|w: M a0 IER ARG

)
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4. THE SOLVABILITY OF LINEARIZED PROBLEM AND
THE NONLINEAR PROBLEM

Let us consider the linearized problem (2.1).

Theorem 4.1. Let Q € R® be an exterior domain with the smooth boundary

00, ® € At (), % > 1, 1>2, 6€(0,1), po(z) = puexp®(z). Sup-

pose that w EQ]$+1 29y, F e Q](VZ;U)’Q(Q), geVhiQ), ¢>3/2, ve
(14+2-3/q, 14+3-3/q), be given functions with w =0, divw =0, z € 09,
and F satisfies the compatibility condition (3.5). There exists a number g9 >0
such that if ||w m““ l+2)’q )|| < €9, then problem (2.1) has a unique solu-

tion (o,v) € m“ Hl)’q(ﬂ) X Q?Eﬁl’lﬁ)’q(ﬂ). Moreover, div (wo) € VI14(Q)

and there hold the estimates

o055 @) + vs By @ >||
<c(IIF o5 a@] + g5 V@)
| div (wo); Vi@ < e (|7 005 n)|| + [l Vi@

The solvability of (2.1) is proved using the linear mapping £: 7 — o
defined by (2.6). If &g is small enough, we prove that the mapping £ is a
contraction and, therefore, £ has a fixed point o. Taking in (2.2)-(2.5) 7 =0
we find ¢ — the solution of Neumann problem (2.2) and (u, IT) — the solution
of modified Stokes problem (2.3). The solution (o, v) of problem (2.1) is then
(o,v=u+Vy).

While linearized system (1.8) is solved, we find the solution of the nonlinear
problem (1.6), (1.7) in the form (o,v = V¢ + u), where (0, p,u) is a fixed
point of the nonlinear mapping N: (1,&,2z) — (0,¢,u) with (0, ¢,u) being
a solution of the linear problem (1.8) taking in it F = F(7,V¢ + z) and
w = V& + 2. Using the form (pg + o) (v - V)v of the convective term we prove
that (po + 7)(w - V)w satisfies the compatibility condition (3.5) for every

TE Q](l [+1).q 1Q),we Q]gjl’l+2)7q(ﬂ) and, therefore, the nonlinear mapping
is deﬁned correctly. Moreover, for small data we prove that this mapping is
a contraction in certain small ball of the space m“ Hl)’q(ﬂ) X Qigljl’lﬂ)’q(ﬂ)
and, hence, it has a unique fixed point — the solutlon of problem (1.6), (1.7).
Finally, we get the main result of the paper.

Theorem 4.2. Let Q € R® be an exterior domain with the smooth boundary
o0, @ e AT (), Fe !N, 1>2,6€(0,1), ¢>3/2, ye(+

[+1464+
2-3/q,14+3-3/q), vo > 1. Suppose that the function £ satisfies compatibility
condition (3.5). There exists a number e, > 0 such that if ||f m“ ' l)’q || <

€, then problem (1.6), (1.7) has ezxactly one solution (o,v) € Qi(l L), q(Q) X
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Q]gljl’lﬁ)’q(ﬁ) satisfying the estimate ||a; Q]gl”éﬂ)’q(ﬁ)”-l-nv; Q]gjl’lﬁ)’q(ﬁ)” <

el 255 @)
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Spudaus skyscio tekéjimo matematinis modelis
T. Leonaviciené, K. Pileckas

Siame darbe iSnagrinétas spudaus skys¢io tekéjimo iSorinéje srityje Q C R? matemati-
nis modelis. Sios problemos sprendimui pritaikyta dekompozicijos schema, kuri leidzia
netiesinj uzdavinj suskaidyti j tris paprastesnius tiesinius uzdavinius: Neimano tipo, modi-
fikuota Stokso ir transporto. Siu tiesiniy uzdaviniy sprendiniy ieSkota specialiose svorinése
funkcijy erdvése su atskirta asimptotika.

Suformuluotos teoremos apie minéty tiesiniy ir netiesinio uzdaviniy sprendinio egzisten-
cija ir vienatj. Pateikti jrodymuy pagrindiniai Zingsniai.



