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ABSTRACT

We study the convergence rate of a Milstein-type approximation of the solution of an integral
equation driven by a special continuous p-semimartingale.

1. INTRODUCTION

In this paper, we consider the stochastic integral equation (SIE)

t t
Xt=£+/ f(Xs>dWs+/ g(X)dBY,  0<t<T, (L1
0 0

where W is a standard Brownian motion and B¥ is a fractional Brownian
motion (fBm) with Hurst index 1/2 < H < 1. A more detailed definition of an
fBm will be formulated in the next section. The process B, 1/2 < H < 1, is
not a semimartingale but almost all its sample paths have bounded p-variation
for p > 1/H. In (1.1), the first integral is stochastic and the second one is
the defined pathwise Riemann-Stieltjes (RS) integral. The existence of the
RS integral follows by the Love—Young inequality, which we will formulate in
the next section.

Let (Q,F,F,P), F = {F;,0 < t < T}, be a stochastic basis satisfying the
usual conditions. If f is a Lipschitz function and g € C?*(R), then (see [7])
there exists a unique adapted solution of equation (1.1) having almost all
sample paths in the space CW,([0,T]), ¢ > 2, where CW,([0,T]) is the class
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of all continuous functions defined on [0, 7] with bounded g-variation.
Equation (1.1) differs from the ordinary SDE by its last term on the right
side. By an ordinary SDE we understand an equation of the form

{ Xy = o(t, X)) dW, +b(t, X)) dt, 0<t<T, 12)

Xo = €.

It is well known that the convergence rate of the strong Euler—Peano ap-
proximation of the solution of SDE (1.2) has upper bound 6711/ 2, where ¢, is
the mesh of a partition of [0,T] of the nth approximation. For the strong
continuous Milstein approximation, this bound is d,,. Our equation (1.1) is
more general than the SDE (1.2). Thus, to obtain the rate of convergence
comparable with the strong Euler—Peano approximation we shall use a more
complicated approximation.

Let »™ = {t}: 0 < k <m(n)}, n > 1, be a sequence of partitions of the
interval [0,7], i.e., 0 =t <t < --- < by = T, and let 6, = max, ({7 —
ty_,;) = 0asn — oo.

For each n > 1, we define the approximation

t s , n Tn n Tn H
o[ [ oo emsoen e av, i

[ [ garamecenayasast, 0

where 77 =t} , and X™(71") = X"(tR ) if s € (¢} ,,t}], 1 < k < m(n).
For fixed n € N, by definition, the process X" is sample continuous and its
sample paths belong to CW,([0,T1), ¢ > 2.

Note that approximation (1.3) becomes the strong continuous Milstein ap-
proximation if f = 0 and becomes the strong Euler—Peano approximation if
g=0.

Theorem 1.1. Let f and g be bounded functions, f be a Lipschitz function
and g € C*(R). Then

anVy (X" = X;[0,T]) =50,  n— oo,

where V(X" — X;[0,T]) = vs/?(X" — X;[0,T)), vy (X" — X;[0,T)) is the
q-variation of X" — X, a,, = 5;1/q|1n 6l =12, 6, < 1, ¢ > 2.
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Corollary 1.1. Let the conditions of Theorem 1.1 be satisfied. Then, for all
e >0,

1/r
dn(E sup Xt"—Xtr") —40, 1 — oo,
0<t<T

where &,, = 5;1/2"_8, 1<r <.

As we will see below, the rate of convergence in Corollary 1.1 mainly de-
pends on the stochastic integral with respect to the Wiener process. Thus,
the result obtained in Corollary 1.1 is close to the optimal one if the function

f#0.

Consider the integral equation

t t
2 = 70 + / Flws) ds + / o(zs) dh, (1.4)
0 0

where h is a continuous function with bounded p-variation, 1 < p < 2. In

[8], the uniform distance between the solution of (1.4) and its Milstein-type

approximation was estimated by 6, Ay, (n)Av7(n), where aAb is the minimum

of a and b, v,(n) = maxy V,(h; [t} . t}]). In particular, if h is a Lipschitz

function of order a, then the uniform distance has the bound 6% for 4,, < 1.
Define, for t} = kT/n, k=0,...,n — 1, the Euler approximation

X () = X () + o (7, X (60) (W (t7,) — W)
- +0 (i, XM () (tp 0 — 1),
X 0)==

and, for t € [t},t;,,), k=0,...,n =1, put

It is known (see [1], p. 277) that

N o e\ /T /1+1
(E sup |Xt”—Xt| ) < ﬂ, n>1,
0<t<T n

where C' is a constant depending on r, T, and the functions b and o.
Moreover, let o(t,z) = o(t) in (1.2). Then (see [6]) we have

lim (n/In n)l/2 (E sup |)/ft” - th|r)1/7" =1/V2 sup|o(t)|.
t<T

n—o0 0<t<T
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In a special case, we can get, the optimal convergence rate. Consider SIE

t t
n=£+/0 f(Ys)dWs+/0 o(s)dBE,

and its Euler—Peano approximation

t
§+/ FY™ () dw +/ g(t™)dBE.
Then we obtain the following result.

Theorem 1.2. Let f and g be bounded functions. Suppose that f is a Lips-
chitz function and g has a bounded derivative. Then, for all v, 1 < r < 00,
there exists a constant C' independent of n such that

E sup |Y,;" - Y;g|r < OO/
0<t<T

2. BASIC NOTIONS AND AUXILIARY RESULTS

All facts mentioned below on the p-variation are taken from [3], [4].

Let f be a real-valued function defined on a closed interval [a,b]. For 0 <
p < 00, denote by v,(f) := vp(f;[a,b]) the p-variation of f on [a,b].

Define V,(f) = V,(f;[a,b]) = vp/ (f), which is a seminorm on the class
Wy ([a,b]) of all funct10ns of bounded p-variation on [a,b]. For each f, V,(f)
is a non-increasing function of p, ie., if ¢ < p, then V,(f) < Vi(f). Thus,
W, ([a,Bl) € Wy(la, b)) i 1< g < p < o0

Let p> 1 and

Voo (f) = Voo (£ 10, b]) = Vi (£, [a, B]) + | flss a0

where |f|oo [a,0] = SUD, <<t |f(z)]. Then V, (f) is a norm and W,([a,b])
equipped with the p-variation norm is a Banach space.
Let a < ¢ < b, and let f € Wy([a,b]) with 0 < p < co. Then

'Up(f; [a’7 C]) + 'Up(f; [c7 b]) < vp(f; [G,, b])7
Vo(fla, b)) < Vi (fsla, c) + Vi (5 1e, b)) (2.1)

It is known that

Voo (£ 95 [a,0]) < Vo0 (f5 @, 0]) Vi 00 (95 [a; b)) (2.2)
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Let f € Wy([a,b]) and g € Wy([a,b]). For any partition » = {z;: i =
0,...,n} of [a,b] such that a = 29 < 71 < -+ <z, =band for p~t +¢~! > 1,
we have by the Holder inequality (see [10])

Z Vq (f7 [wi—hxi])vp (g; [mi—la xl]) < Vq (fv [a7 b])vp (g; [a': b]) (23)

Let f € W,([a,b]) and h € W,([a,b]) with p > 0,¢ >0, 1/p+1/g > 1. If
f and h have no common discontinuities, then the RS integral f; f dh exists
and the Love-Young inequality

b
‘ / fdh— f(y)[h() — h(a)]| < Cp,gVy(f;[a, b))V, (h; [a, b)) (2.4)

holds for every y € [a, b], where C, , = ((p~*+¢ 1), ((s) denotes the Riemann
zeta function, ie., ((s) = 32,5, n7°. If h € CW,([a,b]), then the indefinite
integral fay fdh,y € [a,b], is a continuous function.

Let f € Wy([a,b]) and h € CW,([a,b]). From (2.4) it follows that

vp( / £ dh: [a,b1) < CpaVio (f [0 )V (s [as ). (2.5)

An fBm with Hurst index 0 < H < 1 is a centered Gaussian process X =
{X¢,t > 0} with Xy = 0 and covariance

Cov(Xy, X;) = %Var(Xl)(tH{ + 57— |t — s?H)

for all t,s > 0. If Var(X;) = 1, we write X = Bf. The case H = 1/2
corresponds to the standard Brownian motion.

Since almost all sample paths of the processes B, 1/2 < H < 1, are Holder
continuous, we have

Vo (B [s,]) < L7 (8 — 5)'/7, (2.6)
where s <t¢,r >1/H,

B - BY|

S

LHY = sup L 0<y<H  BI <o, VE>I

s#t |t - 5|’Y
s,t<T

Any local martingale is locally of bounded ¢-variation for each ¢ > 2. More-
over (see [7]), for ¢ > 2 and 0 < r < 2, there exist finite constants K, , and
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¢, such that, for continuous martingale M = {M (t),0 < t < T'} and stopping
times 0 < 7 < T,

E{vq( UT])}r/q < Kq,'r‘E{ sup |M(t)|}r

o<tLT

r/2

< Kq,rérE{<M>T - <M>¢T} (27)

3. PROOFS

The following lemma is very useful in the proof of Theorem 1.1.

Lemma 3.1 ([2], see also [8]). Let p > 1, g € C*(R), and z,y € W)y([a,b]),
a <b. Then

Vo(g(2) = 9(y);a,8]) < {19']o0 + 19" |00 Vi (5 [0, 8]) } Voo (2 — w3 [a, D]).
Denote
[(X,0,t) := Cpymax {|g'|s0, 9" |0 } [1 + V4 (X3 [0,])]Vp (B 5[0, 1]).

Define, for each k > 1, the stopping time

1
o :inf{t >op_y: T(X,04-1,t) > Z} AT,

where o = 0.

Proof of Theorem 1.1. For short, we further write hk(Z;) instead of h(Z;)k(Zs)
for any process Z. Since Vy, ¢ > 2, is a seminorm, we have

Vy (X — X" ok—1, O'k])

<, ( / (X — FED AW [akl,ak])
([ o - s anioer. o)

[9(Xs) = g(XI)]dB; [ok—1, U'k])
{atx) = gceniay - g gceny [ aw,

—g'g(X"(TS"))/Tn dBH}dBH oh l,gk> ZL (3.1)
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Now we shall estimate the g-variation of every term in the previous equality.

We first estimate the terms Iy, 3 < k < 4. By the Love-Young inequality (2.4)
we have

no= o/ o) - O DB o1, ] )

< CpgVaoo (9(X) = g(X™(7"); [0k=1,04]) Vo (BT [ok—1, 0%]) -
By Lemma 3.1 and by the inequality
|X = X0 fonr o] S Vo(X = X5 [on—1,0%]) + Vo (X — X710, 0-1])
we have

I3 < Cpo{le'| + 19" Va(Xslok-1,04]) }
X Vo0 (X = X" (041, 0%]) Vp (B ; [0k —1, 0%])
< 05V (X - X" [ak,l,ak]) +0.25V, (X - X" [O,Uk,l]).

Thus,

4
Vo(X = X%[on1,06]) <) I+ 05V, (X — X% [op1,04])

k=1
k3

+0.25V, (X - X0, O'k_l]). (3.2)

Carrying the third term from the right-side of inequality (3.2) to the left-side,
by the inequality

<zn:ai>2<nzn:a§, (3.3)

i=1 i=1

which is valid for any a; € R, we get

V(X = X" [ok—1,0k]) < 16{ Z I} 4+ (025)*V. (X — X™; [0, 0—1]) } (3.4)

k#£3
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We now estimate I4. First we note that by (2.1) and (2.5)

L o< nff)v ( / . 90X = 9 (X (1) £ (X" 05) /dW
~o(x i) [ anlanl )
m(n) - : .
< 2003 (9067 = 9 (x"61)) - £ (X7 10) [ _am,

aB7 7 1,tn])vp(BH; ). (35)

~ga(x"i5) [

n
tkl

By the It6 formula for p-semimartingales (see [9]) we have

oX) =g (X" ) = [ () axs
vy SO
Thus,

v (s -0 ) - g s (e ) [ aw,

n
tk—l

—g'g(Xn( Z—l))/tn dBH [k 1atk]>

—1

<l ( / g (X)) — (X)W [tzl,tz])

n
k—1

Pt [ OO0~ (X B )
Plelflta( [ o O [ awant )

il ([ 00 [l an i)

k—1 tz 1
1, '
=PI

n
k—1

5

g (X" () ds [£] t) =3
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Using (3.5), (3.3), the Cauchy inequality, and (2.3), we obtain

5 m(n)

2
EI} < 4C§7qE{ SN (B [tZ_l,tZ])}

i=1 k=1

5 m(n) 2
< 2002 \/EVA(B7;00,T]) S J E( 3 (J,Ei’”))2> . (3.6)

i=1 k=1

We further have

m(n)

" 2 m(n)
E( Z (J,El,n))2> < Z E(Jlgl,n))4+ Z \/E(Jl-(l’n))4E(JJ(1’n))4_
ij=1
i#i

k=1 k=1

By inequality (2.7) we obtain

E(/)Y < Ifl‘équ,4184E( / ' [g'(X”(s))—g'(X”(tz1)>]2ds)

n
tk—l

<K alalg" ) (87 — 871 ) "BV (X7 [ty 87])-

Thus,
m(n) (o2 2
,n
B( > G0))
k=1
4 4 2 4 .
Ul Kyatalg[LT° _max BV (X[ ). (3)

By (2.5) we further obtain

T3 < 1gl00C g Vioo (9'(X™) = o' (X (871)); [ty 7])
XVP(BH; [tzflat’g])
< 2|g|oo|g”|oocp,qvq(Xn; [tZ—latZ])Vp(BH? [tZ—latZ])' (3.8)

From inequalities (2.5) and (2.2) we get

T < g ool FloeCrag Vo (6" (XY (W = W (t1)); [t £7])
xVy (BT [th 1, 17])
< |9I|00|f|oocp,qvq,oo (gl(Xn)E [tZ—latZ])
X Voo (W = W (t5_1)s [tia tR]) Vo (B [tio1, 87])
4|9I|00|f|00|g”|000p,qvq (XnQ [07T])Vq (W§ [tﬁfl,t?])
xV,(B"; [ti_y,t7]) (3.9)

IN
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and
T <419 oolgloolg" o CpngVa (X [0, TNV (B [0, ]). - (3:10)

It is evident that
T < FRog oo (t = 1) (3.11)
By the inequality
ViXS D)< U e Va3 T ) + gl Vo (B [0, 88])
+2Cy,419 |00l floa Vg (W§ [tz_l,tg])v (BH [ b 1,t"])
"‘2010,q|gl|oo|g|oon2 (BH; [t 1, t7]),

inequalities (3.6), (3.7)-(3.11), and (2.3), (2.6) we get

B < 2003, /B (B0 {(B, e VOO )
v (E 1<kem(n) Ve (X [t 1] )) "
V(B s V7))
v(B e VBT ) Ve

x [ /B als | FPelg" BT +4C2, gl g {/EVE (BT 0,7))

+2'Cp 19" Bolg" 2| f 136 BV (X [0, TN ViE (BH; [0, 1)

+2'C7 19" 219" 121912 A/ EVE (X [0, T]) VS (BT [0, T7)

HF g 2 T| <02 R, (3.12)

where R is a certain constant. By (2.7) we further obtain

T 2
EL < K,obE /0 [9(X™(5)) — g(X"(r™))] ds

< K, 20TE sup |g(X”(s)) — g(X”(Ts”)) |2

\

< q2€2|g|ooTE max()v2(X";[tg,1,t7;]) (3.13)

and
Ok
EIf < Kq,2£2|f'|2E/ V(X — X" [0,s])ds. (3.14)
Ok—1
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Thus, by (3.1), (3.3), (3.4), and (3.12)-(3.14), we have

EV}(X - X"[0,04]) < ZEV2 — X" (g1, 00])

J
<165 ) {53/‘11% +(0.25)°EV, (X — X™;[0,04_1])
k=1

+ Kol f'PE /

n
O—1

< 1652R0% + j°EVZ (X — X™;[0,0-1])

V(X - X" [O,s])ds}

T
+16qu72€2|f'|2/ EVQQ(X—Xn;[O,S/\O'j])dS.
0

Using this recurrent expression and the Gronwall lemma, one can show that
there exists a constant C'(j) independent of n such that

EVZ(X — X";[0,0]) < C(j)Rs2/1.
Let a,, = 6;1/q| In 6,,|~'/2. Then, for every v > 0,

P 0V, (X = X5(0,7]) > 7)
< P(aan (X = X"5[0,0,)) > 3) +P(0; < T)

407( /) . EF(X 0,7).

~

Thus, we obtain the assertion of the theorem.l

Proof of Corollary 1.1. Let € be any positive number and p = 2/(1 — €).
Since, for every ¢ > 1,

sup | X (1) — X"(t)| < Vg (X — X™;[0,T1),
t<T

we have

8, 12 = sup | X (1) — X" (t)] < 0, /*T°V, (X — X™;[0,T)).
t<T

For all > 1 and ¢ > 2 (see [7]), we have

EV"(X™[0,T]) <oco and EV(X;[0,T]) < oo
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Thus, the r.v.’s V,(X — X™;[0,T) are uniformly integrable, and by Theorem
1.1 we get the assertion of Corollary 1.1.

Proof of Theorem 1.2. It is evident that the r.v.’s sup, < |Y;|" and
sup;<r |Y;"|" are integrable for r > 1. By the Burkholder—Davis-Gundy (BDG)
and Holder’s inequalities we get

T
E sup V() —Y"(t)|" <37"_1C(r)T7"/2_1L’"/ E( sup [V (s) —Yn(s)r)dt

0<t<T 0 0<s<t

T
+3T*10(T)Tr/2*1LTE/ Y™ (s) = Y™ (r")|" ds
0

/0 lg(s) — g(r})]dB] ' (3.15)

+ 3" 'E sup
0<t<T

where L is the Lipschitz constant for the function f and C(r) is the BDG
constant.
Note that

B[ ") - YR s
<2ME/OT [ o) ds+2HE/OT [ oty ast

T
SXTOOESLT 2ol (B0 - B s (316)
0

r

ds

By the chain rule we obtain

/ o(s) dBT = g(t)B" (1) - / B dg(s)
0 0

Since
t
/ g(rm) dBH = g(r)BH (1 / B (7)g/(s) ds,
0

where 70 =t | for s € [t},17, 1), 0 <k <m(n) — 1, we have

t

/0 [9(s) — g(r]dBYE = [g(t) — g(r1)] BY / B (s)g/(s) ds

n
t

—/OTZL [B (s) — BH (#1")]ds. (3.17)
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Thus, we get

r

sup
0<t<T

/0 [9(s) — g(r™)] dBH

115

T
<27g'1% Sgg|35|r5£ +2’"_1|9'|20T’"_1/ |B(s) = B (7])]"ds. (3.18)
t< 0

By inequalities (3.15)-(3.18) we obtain

E sup [V(t) - Y"(0)"
0<t<T

< (671 C3 (T PLTI L, +2- 677 g |5, 07 "B sup [Bf|7) 67/
t<T

T
+3T*10(T)TT/2*1LTE/ (sup |Y(s) - Y”(s)|r) dt
0 s<t
T
+6’"’1C(r)TT/2*1LT|g|QOE/ B (s) — BY (z7)|"ds
0
T
46T E [ BY () - B .
0
For each a > 1, there is a constant K, such that (see [5])

E|B(t) — B (s)|* < K|t — s|*".

Thus, we have
T T
/ E|B"(s) — B (#")|"ds < K/ (s — ) Hds < K,.60H T
0 0
and

T
r 1
/ E|B"(s) - B"(r!)|"ds < K, 6,7 T for 3 <H<L
0

By the Gronwall lemma and inequalities (3.19)-(3.21) we get

E sup |Y(s)— Y”(s)|r < 06:/263L2T,
0<t<T

where C' is a certain constant.

(3.19)

(3.20)

(3.21)
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Apie stochastiniy integraliniy lygc¢iy, valdomuy p-semimartingaly,
aproksimacijos asimptotinj elges}

K. Kubilius

Nagrinéjamas Milsteino tipo aproksimacijos konvergavimo greitis | integralinés lygties, val-
domos specialaus tolydaus p-semimartingalo, sprendinj. Irodyta, kad nagrinéjamas stiprios

Milsteino tipo aproksimacijos konvergavimo greitis yra artimas difuzinés lygties stiprios
Eulerio-Peano aproksimacijos konvergavimo greiciui.



