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ABSTRACT

Usually all self-similar heat boundary layer problems in presence of magnetic field are solved
neglecting the Joule heat, created by current, induced in fluid by interaction of velocity and
magnetic field. But the analysis of this heat shows that its influence to the temperature field
is very important. For vertical flows it is impossible to find self-similar solution of boundary
layer problems due to the Joule heat influence in temperature field. For horizontal flows
only two self-similar boundary layer problems can be formulated: flow near the critical
point in magnetic field with the neutral point and in the transverse steady magnetic field.

1. INTRODUCTION

The large attention is paid to the heat boundary layer in the magnetic field
due to wide practical needs. To solve this type of problems the self-similar
approximation is used. This method allows to reduce partial differential equa-
tions to the ordinary equations [2]:

In most cases formulating of that type problems the Joule heat dissipation
is neglected. This Joule heat is created by electric current induced in moving
fluid by magnetic field. But is this neglect correct?
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2. MAGNETOHYDRODYNAMICS PROBLEMS

Motion of electrically conducting fluid in magnetic field with heat convection
is determined by the system of differential equations [2]:

a) the fluid motion equation
1 9 1,
(V-V)V:—;gradp+vv V—BTg+;_7 x B, (2.1)

b) the energy equation

.12
VgadT = y927 + U
opcy,

¢) The Maxwell equation

1
Jj= %rot B, (2.2)

d) The Ohm equation for moving environment
j=0(E+V x B), (2.3)
e) solenoidality conditions for velocity, electric and magnetic fields
divV =0, divj =0, divB =0.

Here V? = i

0 . .. .
52 + B—yQ’ o — electrical conductivity, p — density, ¢, — constant

. A . .. .
of specific heat, y = — — specific temperature conductivity, A — specific heat
¢

14
conductivity, po = 47 - 10~7 H/m.
Applying the rotor operation to the equation (2.1) we obtain the fluid mo-
tion equation without pressure

1
rot (rot V x V) = vV?rot V — frot Tg + —rot (rot B x B), (2.4)
Ho

and from (2.2) and (2.3) we get the induction equation

V2B = —opgrot (V x B). (2.5)
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In two-dimensional plane case it is possible to introduce 3 stream func-
tions [1]: the hydrodynamic stream function 1):

LW

= =—— 2.
U ay ) v al_ ) ( 6)
the electric stream function )y :
. 8¢1 . 8'(,01
- =__ 2.7
the magnetic stream function s:
8¢2 a'¢2
B,=—, B,=-—. 2.8

First, we substitute (2.6) and (2.8) into induction equation (2.5) after con-
verting it to co-ordinate form. In result we obtain

Vipy = —Uuo(%% _ 8%) +K

or 8y 0Oy Oz (29)

The Maxwell equation gives us

o _L1(0By 0By _ 1,
JZ_/J/()( a.’E ay ) - I,LOV 1/}2
or, using (2.9),
- L oo O Orpy Ot Do
L= =o(F g ) — K
J ,uov ¥ U(ax oy Ay 63:)

Next, we transform fluid motion equation (2.4) using (2.6) — (2.8) and
consider them in domains without external electric current sources in fluid.
The result is:
oY 0

V) — B_y%V%p +vV3(V))

oy 9
or Jy
oT oT
= Bg(% cosy — a_y cosa)

RII JS Ty
Plio ( ox ayv V2 dy Ba:v ¢2)'

The energy equation can be written as:

e gy T () () e
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To ensure that the problem is 2-dimensional here is assumed that gravity
force is oriented in x — y plane. a and ~y are angles between gravity vector g
and Oz and Oy axes, respectively.

Usually, 2 types of heat boundary layers are considered: vertical (bound-
ary layer is parallel to the gravity force) and horizontal (boundary layer is
perpendicular to the gravity force).

Also, we use non-induction approximation. In this case we take into account
induced electric currents, but not their magnetic fields. For this purpose we
shall find magnetic stream function as a series by Batchelor’s parameter [1]

= B™an,
n=0

8 = poov — Batchelor’s parameter.
On Earth this parameter is about 10~% +10~7 and we can use only two first
terms of this series: 199 — external magnetic field, and 1)5; — induced currents.
Induction equation (2.9) gives for these terms (K = 0):

V2/(/}20 - 07
Vipy = V2¢21——0M0(

9 Dipao 3_¢3¢20)
Oxr Oy Oy Ox /°

To construct self-similar boundary layer solution in both vertical and horizon-
tal cases we shall use these functions:

82
5 1/) = A'ka(n)a 1/12 = Dlﬂf2(77),

V2 =
Oy
I'=Cz0(n), n=y/BaP. (2.10)

Now let us to investigate each type of boundary layer separately.

2.1. Vertical flows

The case a = 0,7 = 7/2.
Here we have the following system of differential equations:

a) the fluid motion equation

oY O*Y O 0% o

Oxr Oy* Oy Oz Oy>? v Oyt
oT o (61/}20 (61/1 00 OY 61/120)

=095y~ oo ay\ox 8y 0y on

Othap O Opag O Onag
—a—y%(%a—y‘a_y 5.)) (2.11)
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b) The energy equation

QWO D6 _ 0T | o (04 23wy

= 2.12
oy 0r  Ox Oy X8y2 peyio N0z Oy dy Ox ( )

Substituting (2.10) into (2.11) and (2.12) we obtain

AZ
_Z,2k73p71 (kf _ pnf')f”'

B3
A% o o vA
_ﬁljk 3p 1f’((k—2p)f”—p77f”')+§l‘k 4prV
o AD? Con
= ;?127% 2 [(szo — P fao) [(kf —pnf') fs

— f'(vfa0 — ;m?féo)]l — foolk +y—p—1) [(kf —onf') fzo
— f'(vfa0 — pnféo)] +onfao [(kf —pnf") fo0 = f'(7f20 — pnféo)]']
+ %xq—p@" (2.13)

A—;x’“’p“’l(q@ — o) f - %mk’”q’l (kf —pnf)e’

c o A?D? o
=xpz7" 0" - o B a2 (o (kf — pnf')
— (v fa0 — pnfio)) . (2.14)

For self-similarity the orders of variable z of all terms in (2.13) and (2.14)
should be equal. This condition gives us the system of equalities:

2k —3p—1=k—4p=q—p=2v+k—2p—2
=k—-p+q—1=q—2p=2k—2y—2p—2,
p:]-_ka k:’)/, q:4k—3

This system has no solution if ¥ > 0 (only in this case we can transform
2 2 2

Laplace operator V2 = % + ;—y2 to V2 = ;—y2) This means that it is
impossible to construct the self-similar solution for problems of this type. If
we try to solve this system without the last term (the Joule heat), we obtain:
p=1-—k,v=k,q = 4k—3. Putting these expressions into the energy equation,
we can see, that order of z of all terms is 6k — 5, but order of Joule heat is
6k — 4. This means that far from zero of the co-ordinate system the Joule heat
influence to the temperature field dominates.
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2.2. Horizontal flows

The case a = w/2,7 = 0.
The system of differential equations takes the form:

a) the fluid motion equation

oty ay Y

9r 9y’ Oy ooy oyt
8T o (81/120 a (a’QZJ 8¢20

=095 ™ e oz ay

or 0Oy

O Ohag Ohag O 01 Othag O Othag
Akt N e e U 2.1
Ay Ba:) Ay 83:(633 Oy dy O ))’ (2.15)
b) energy equation:
OUOT D0OT _ 0T o owdim 00dmp o0
Oy Ox Oz Oy _X8y2 peyto Ox Oy oy Ox '~ '

Putting (2.18) into (2.15) and (2.16) gives:
A_2x2k73p71(kf _ f/)f///
55 P

vA
B*

o AD?
= ;B—D2x27+k_2p_2 [(7f20 — P fa0) [(kf - pnf')fﬁo

AZ
_ _Z,2k73p71fl((k _ 2p)f” _ pnf///) +

53 xkf4prV

— f'(vf20 — ;m?féo)]l — foolk +y—p—1) [(kf —nf') fzo
— f'(vfa0 — pnféo)] +onfyo[(kf —onf') fao — F' (7 f20 — pnféo)]']

+ BgCa"~' (¢© — pn@'"), (2.17)
A—BCSU'“_”“_I(q@ - O f' — %w’“”*q_l (kf —pnf)o'

= x%wq’“’@” — pcjuo %w%*”””’z’ (fo0(kf —pnf")

— F'(vfa0 — pfh)”. (2.18)

Self-similarity conditions are:

2k —3p—1=k—-4p=q—1
=2y+k—-2p—-2=k—p+q-—1
=q—2p=2k+2v—2p—2,
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This system have only one solution (for £ > 0):

In this case it is possible to formulate two self-similar boundary layer problems
for the flow near the critical point:

a) in transverse steady magnetic field (Fig. 1,a);

b) in magnetic field with neutral point (Fig. 1,b).

T O

Figure 1. Schemes of fluid flow and magnetic fields: a) flow near the critical
point in transverse steady magnetic field; b) the flow near the critical point
in magnetic field with neutral point.

These configurations of magnetic field are obtained from the equation

V21[120 =0= fal(n) =Cin+Cs,

and
a/‘/}20 DCl 2y—1
B,y = =——z% )
0 Oy B
0 DC
Byo = — g};o =— Bl (2y — D)y2®" "t — DCoyz" 1.
Fory=1:

a) C1 =0,Cy = 1 — the transverse steady vertical magnetic field:
By = 0, ByO = _D;
b) C; = 1,C5 = 0 — the magnetic field with neutral point:
D

D
Bgo = El“,Byo =—gY
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B
We will use these dimensionless parameters: Pr = — — Prandtl number
X
cB* D?B?
(AB = v), Gr = by ~ Grashof number, Ha? = Z — Hartmann
vA pv
2
number, Fc = 0 Eckert number. Then we have
Cy
A2D?
7 = Ha?Pr Ec.
peupox  C

The Eckert number is used here formally and it is not connected with inter-
pretation given, for example, in [3].

2.3. Flow near the critical point in the transverse steady magnetic
field

In this case the stream functions are:

¢ =Azf(n), 2 =Dzfn(n), T=Cz*0(n), n=y/B, fo(n) =1

Equations:

fIV + ff/u _ flfll —92GrO — HanlI’
Pr(20f' — f0') = ©" — Ha?PrEcf".

Boundary conditions:
f(0) =0; f'(0) =0; f"(00) = 0; f'(c0) =1; O(0) = 1; O(o0) = 0.
But if we put boundary conditions into the energy equation, we obtain:

n=o00: Pr(20(c0)f'(c0) — f(c0)0'(c0)) = ©"(c0) — Ha’Pr Ecf'*(0)
= 0"(c0) = Ha?Pr Ec.

This contradicts with the boundary condition ©"(c0) = 0, if we try to find
smooth solution for this problem. This contradiction is because velocity and
magnetic field interact not only in boundary layer but in whole fluid outside
the boundary layer. This Joule heat induced in the whole fluid force us to
find another boundary condition for ©"(oc0).
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2.4. Flow near the critical point in the magnetic field with the neu-
tral point

In this problem the stream functions are:

¢ =Azxf(n), 1 =Dzfxn(n), T=Cz*0(n), n=y/B, faln)=n.

Equations:
V= =2Gr0 — Ha* (=0 f" +nf' = f),
Pr(20f' — f0') = ©" — Ha?PrEc(f — nf')?.
Boundary conditions:
£(0) = 0; f'(0) = 05 f"(c0) = 0; f'(00) =1; ©(0) = 1; O(o0) = 0.

In this case all boundary conditions do not contradict with equations. This
is because the formal topology of velocity streamlines and the magnetic field
are the same outside the boundary layer and electric current induces only in
boundary layer, where velocity and streamlines of magnetic field intersect.

But attempts to obtain the numerical solution fail. This is because the
solution of the pure hydrodynamic problem gives that fluid velocity far from
boundary layer is v.= —Dy + C and C is not zero. Interaction of such
velocity and the magnetic field creates Joule heat far from heating plane and
this situation contradicts with the boundary condition ©(o0) = 0.

3. CONCLUSION

It is impossible to formulate self-similar heat boundary layer problem in the
magnetic field for vertical flows with Joule dissipation. But also we have no
rights to neglect this induced heat because its influence is very strong.

Two problems can be formulated for self-similar horizontal flows: flow near
the critical point in the magnetic field with the neutral point and in the
transverse steady magnetic field. But both of them could not be solved due
to contradictions between equations and natural boundary conditions.
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Apie automodelinius pakras¢io sluoksnio $ilumos uzdavinius
magnetinéje hidrodinamikoje

V. Kremenetsky

Paprastai visi automodeliniai pakras¢io sluoksnio Silumos uzdaviniai, esant magnetiniam
laukui, yra sprendziami ignoruojant Dziauline Siluma, kuria sukuria srové indikuota skyscio
greicio ir magnetinio lauko saveikos. Taciau 8ios Silumos jtaka j temperaturinj lauka labai
svari. Vertikaliesiems srautams nejmanoma rasti automodelinio sprendinio dél Dzaulinés
gilumos jtakos j temperaturinj lauka. Horizontaliesiems srautams gali buti suformuluoti
tik du automodeliniai pakras¢io sluoksnio Silumos uzdaviniai: tekéjimas netoli kritinio
taSko magnetiniame lauke, turin¢iame neutralyjj taska ir tekéjimas stabiliame magneti-
niame lauke.



